A HME neural network knowledge-increasable model

Jinwei Wen, S. Luo
{"title":"A HME neural network knowledge-increasable model","authors":"Jinwei Wen, S. Luo","doi":"10.1109/ICOSP.2002.1180019","DOIUrl":null,"url":null,"abstract":"The HME network divides a task into small tasks by the principle of divide and conquer to improve the performance of a single network. This approach often brings simple, elegant and efficient algorithms. By studying the dual manifold architecture for mixtures of neural networks and analyzing the probability of knowledge-increasable model based on information geometry, the paper proposes a new method to achieve the multi-HME model that has knowledge-increasable and structure-extendible ability. The method helps to provide an explanation of the transformation mechanism of the human recognition system and understand the theory of the global architecture of the neural network.","PeriodicalId":159807,"journal":{"name":"6th International Conference on Signal Processing, 2002.","volume":"72 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2002-08-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"6th International Conference on Signal Processing, 2002.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICOSP.2002.1180019","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

The HME network divides a task into small tasks by the principle of divide and conquer to improve the performance of a single network. This approach often brings simple, elegant and efficient algorithms. By studying the dual manifold architecture for mixtures of neural networks and analyzing the probability of knowledge-increasable model based on information geometry, the paper proposes a new method to achieve the multi-HME model that has knowledge-increasable and structure-extendible ability. The method helps to provide an explanation of the transformation mechanism of the human recognition system and understand the theory of the global architecture of the neural network.
一种HME神经网络知识递增模型
HME网络采用分而治之的原则将一个任务划分为多个小任务,以提高单个网络的性能。这种方法通常会带来简单、优雅和高效的算法。通过研究混合神经网络的对偶流形结构,分析基于信息几何的知识可增长模型的概率,提出了一种实现具有知识可增长和结构可扩展能力的多hme模型的新方法。该方法有助于解释人类识别系统的转换机制,理解神经网络的全局架构理论。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信