{"title":"A HME neural network knowledge-increasable model","authors":"Jinwei Wen, S. Luo","doi":"10.1109/ICOSP.2002.1180019","DOIUrl":null,"url":null,"abstract":"The HME network divides a task into small tasks by the principle of divide and conquer to improve the performance of a single network. This approach often brings simple, elegant and efficient algorithms. By studying the dual manifold architecture for mixtures of neural networks and analyzing the probability of knowledge-increasable model based on information geometry, the paper proposes a new method to achieve the multi-HME model that has knowledge-increasable and structure-extendible ability. The method helps to provide an explanation of the transformation mechanism of the human recognition system and understand the theory of the global architecture of the neural network.","PeriodicalId":159807,"journal":{"name":"6th International Conference on Signal Processing, 2002.","volume":"72 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2002-08-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"6th International Conference on Signal Processing, 2002.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICOSP.2002.1180019","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
The HME network divides a task into small tasks by the principle of divide and conquer to improve the performance of a single network. This approach often brings simple, elegant and efficient algorithms. By studying the dual manifold architecture for mixtures of neural networks and analyzing the probability of knowledge-increasable model based on information geometry, the paper proposes a new method to achieve the multi-HME model that has knowledge-increasable and structure-extendible ability. The method helps to provide an explanation of the transformation mechanism of the human recognition system and understand the theory of the global architecture of the neural network.