{"title":"Strong Stationary Duality and Algebraic Duality for Continuous Time Möbius Monotone Markov Chains","authors":"Pan Zhao","doi":"10.18642/ijamml_710012241","DOIUrl":null,"url":null,"abstract":"Under the assumption of Möbius monotonicity, we develop the theory of strong stationary duality for continuous time Markov chains on the finite partially ordered state space, we also construct a nonexplosive algebraic duality for continuous time Markov chains on Finally, we present an application to the two-dimensional birth and death chain.","PeriodicalId":405830,"journal":{"name":"International Journal of Applied Mathematics and Machine Learning","volume":"5 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-12-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Applied Mathematics and Machine Learning","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.18642/ijamml_710012241","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
Under the assumption of Möbius monotonicity, we develop the theory of strong stationary duality for continuous time Markov chains on the finite partially ordered state space, we also construct a nonexplosive algebraic duality for continuous time Markov chains on Finally, we present an application to the two-dimensional birth and death chain.