Andreas Hald, J. Hansen, J. Kristensen, Paolo Burelli
{"title":"Procedural Content Generation of Puzzle Games using Conditional Generative Adversarial Networks","authors":"Andreas Hald, J. Hansen, J. Kristensen, Paolo Burelli","doi":"10.1145/3402942.3409601","DOIUrl":null,"url":null,"abstract":"In this article, we present an experimental approach to using parameterized Generative Adversarial Networks (GANs) to produce levels for the puzzle game Lily’s Garden1. We extract two condition-vectors from the real levels in an effort to control the details of the GAN’s outputs. While the GANs performs well in approximating the first condition (map-shape), they struggle to approximate the second condition (piece distribution). We hypothesize that this might be improved by trying out alternative architectures for both the Generator and Discriminator of the GANs.","PeriodicalId":421754,"journal":{"name":"Proceedings of the 15th International Conference on the Foundations of Digital Games","volume":"33 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-09-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 15th International Conference on the Foundations of Digital Games","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3402942.3409601","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 6
Abstract
In this article, we present an experimental approach to using parameterized Generative Adversarial Networks (GANs) to produce levels for the puzzle game Lily’s Garden1. We extract two condition-vectors from the real levels in an effort to control the details of the GAN’s outputs. While the GANs performs well in approximating the first condition (map-shape), they struggle to approximate the second condition (piece distribution). We hypothesize that this might be improved by trying out alternative architectures for both the Generator and Discriminator of the GANs.