Procedural Content Generation of Puzzle Games using Conditional Generative Adversarial Networks

Andreas Hald, J. Hansen, J. Kristensen, Paolo Burelli
{"title":"Procedural Content Generation of Puzzle Games using Conditional Generative Adversarial Networks","authors":"Andreas Hald, J. Hansen, J. Kristensen, Paolo Burelli","doi":"10.1145/3402942.3409601","DOIUrl":null,"url":null,"abstract":"In this article, we present an experimental approach to using parameterized Generative Adversarial Networks (GANs) to produce levels for the puzzle game Lily’s Garden1. We extract two condition-vectors from the real levels in an effort to control the details of the GAN’s outputs. While the GANs performs well in approximating the first condition (map-shape), they struggle to approximate the second condition (piece distribution). We hypothesize that this might be improved by trying out alternative architectures for both the Generator and Discriminator of the GANs.","PeriodicalId":421754,"journal":{"name":"Proceedings of the 15th International Conference on the Foundations of Digital Games","volume":"33 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-09-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 15th International Conference on the Foundations of Digital Games","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3402942.3409601","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 6

Abstract

In this article, we present an experimental approach to using parameterized Generative Adversarial Networks (GANs) to produce levels for the puzzle game Lily’s Garden1. We extract two condition-vectors from the real levels in an effort to control the details of the GAN’s outputs. While the GANs performs well in approximating the first condition (map-shape), they struggle to approximate the second condition (piece distribution). We hypothesize that this might be improved by trying out alternative architectures for both the Generator and Discriminator of the GANs.
基于条件生成对抗网络的解谜游戏程序内容生成
在本文中,我们提出了一种使用参数化生成对抗网络(GANs)为益智游戏《百合花园》制作关卡的实验方法。我们从实际水平提取两个条件向量,以控制GAN输出的细节。虽然gan在近似第一种条件(地图形状)方面表现良好,但它们难以近似第二种条件(块分布)。我们假设,通过尝试gan的生成器和鉴别器的替代架构,这可能会得到改善。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信