Session-based Recommendation with Transformers

Yichao Lu, Jianing Sun
{"title":"Session-based Recommendation with Transformers","authors":"Yichao Lu, Jianing Sun","doi":"10.1145/3556702.3556844","DOIUrl":null,"url":null,"abstract":"Large item catalogs and constantly changing preference trends make recommendations a critically important component of every fashion e-commerce platform. However, since most users browse anonymously, historical preference data is rarely available and recommendations have to be made using only information from within the session. In the 2022 ACM RecSys challenge, Dressipi released a dataset with 1.1 million online retail sessions in the fashion domain that span an 18-month period. The goal is to predict the item purchased at the end of each session. To simulate a common production scenario all sessions are anonymous and no previous user preference information is available. In this paper, we present our approach to this challenge. We leverage the Transformer architecture with two different learning objectives inspired by the self-supervised learning techniques to improve generalization. Our team, LAYER 6, achieves strong results placing 2’nd on the final leaderboard out of over 300 teams.","PeriodicalId":141185,"journal":{"name":"Proceedings of the Recommender Systems Challenge 2022","volume":"14 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-09-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the Recommender Systems Challenge 2022","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3556702.3556844","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

Abstract

Large item catalogs and constantly changing preference trends make recommendations a critically important component of every fashion e-commerce platform. However, since most users browse anonymously, historical preference data is rarely available and recommendations have to be made using only information from within the session. In the 2022 ACM RecSys challenge, Dressipi released a dataset with 1.1 million online retail sessions in the fashion domain that span an 18-month period. The goal is to predict the item purchased at the end of each session. To simulate a common production scenario all sessions are anonymous and no previous user preference information is available. In this paper, we present our approach to this challenge. We leverage the Transformer architecture with two different learning objectives inspired by the self-supervised learning techniques to improve generalization. Our team, LAYER 6, achieves strong results placing 2’nd on the final leaderboard out of over 300 teams.
基于会话的变压器推荐
庞大的商品目录和不断变化的偏好趋势使推荐成为每个时尚电子商务平台至关重要的组成部分。但是,由于大多数用户是匿名浏览的,因此很少有历史偏好数据可用,因此只能使用会话内的信息进行推荐。在2022年ACM RecSys挑战赛中,Dressipi发布了一个数据集,其中包含了110万个时尚领域的在线零售会话,时间跨度为18个月。目标是预测每次会话结束时购买的物品。为了模拟常见的生产场景,所有会话都是匿名的,并且没有以前的用户首选项信息可用。在本文中,我们提出了应对这一挑战的方法。我们利用Transformer架构和受自监督学习技术启发的两个不同的学习目标来改进泛化。我们的团队LAYER 6取得了优异的成绩,在最终的300多支队伍中排名第二。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信