{"title":"An Algebraic Proof of a Robust Social Choice Impossibility Theorem","authors":"Dvir Falik, E. Friedgut","doi":"10.1109/FOCS.2011.72","DOIUrl":null,"url":null,"abstract":"An important element of social choice theory are impossibility theorems, such as Arrow's theorem and Gibbard-Satterthwaite's theorem, which state that under certain natural constraints, social choice mechanisms are impossible to construct. In recent years, beginning in Kalai'01, much work has been done in finding \\text it{robust} versions of these theorems, showing that impossibility remains even when the constraints are \\text it{almost} always satisfied. In this work we present an Algebraic scheme for producing such results. We demonstrate it for a variant of Arrow's theorem, found in Dokow and Holzman [5].","PeriodicalId":326048,"journal":{"name":"2011 IEEE 52nd Annual Symposium on Foundations of Computer Science","volume":"142 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2011-10-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2011 IEEE 52nd Annual Symposium on Foundations of Computer Science","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/FOCS.2011.72","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3
Abstract
An important element of social choice theory are impossibility theorems, such as Arrow's theorem and Gibbard-Satterthwaite's theorem, which state that under certain natural constraints, social choice mechanisms are impossible to construct. In recent years, beginning in Kalai'01, much work has been done in finding \text it{robust} versions of these theorems, showing that impossibility remains even when the constraints are \text it{almost} always satisfied. In this work we present an Algebraic scheme for producing such results. We demonstrate it for a variant of Arrow's theorem, found in Dokow and Holzman [5].