Cache Antagonists Identification: A Practice from Alibaba Colocation Datacenter

Kangjin Wang, Chuanjia Hou, Ying Li, Yaoyong Dou, Cheng Wang, Yang Wen, Jie Yao, Liping Zhang
{"title":"Cache Antagonists Identification: A Practice from Alibaba Colocation Datacenter","authors":"Kangjin Wang, Chuanjia Hou, Ying Li, Yaoyong Dou, Cheng Wang, Yang Wen, Jie Yao, Liping Zhang","doi":"10.1109/ISSREW55968.2022.00031","DOIUrl":null,"url":null,"abstract":"Colocating latency-critical (LC) jobs and best-effort (BE) jobs on a host effectively improve resource efficiency in modern datacenters. But it increases resource contention between jobs, which seriously affects job performance. In Alibaba's real- world LC- BE colocation datacenters, we observed that cache is one of the most contended resources in the CPU. When cache contention occurs, identifying the antagonists that caused cache resource contention is the first step to mitigate cache contention, called cache antagonists identification (CAl). However, it is chal-lenging to identify cache antagonists because cache contention is difficult to observe and quantify. In this paper, we first propose cache usage graph (CUG) to finely characterize cache usage of jobs in the multiple CPU microarchitectural hierarchies and locations, and we provide a monitoring tool to collect “per-container-per-logic CPU” Ll/2/3 cache misses and build CUG. Then we propose a CUG-based CAl approach, $\\mu$ Tactic. $\\mu$ Tactic leverages machine learning models to quantify the cache contention on every cache hierarchy, then reasons out the cache antagonists with CUG. Experiments in production datacenters show that $\\mu$ Tactic has a high precision (85+%) and low cost (32 ms), which are better than state-of-the-art approaches.","PeriodicalId":178302,"journal":{"name":"2022 IEEE International Symposium on Software Reliability Engineering Workshops (ISSREW)","volume":"58 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 IEEE International Symposium on Software Reliability Engineering Workshops (ISSREW)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISSREW55968.2022.00031","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Colocating latency-critical (LC) jobs and best-effort (BE) jobs on a host effectively improve resource efficiency in modern datacenters. But it increases resource contention between jobs, which seriously affects job performance. In Alibaba's real- world LC- BE colocation datacenters, we observed that cache is one of the most contended resources in the CPU. When cache contention occurs, identifying the antagonists that caused cache resource contention is the first step to mitigate cache contention, called cache antagonists identification (CAl). However, it is chal-lenging to identify cache antagonists because cache contention is difficult to observe and quantify. In this paper, we first propose cache usage graph (CUG) to finely characterize cache usage of jobs in the multiple CPU microarchitectural hierarchies and locations, and we provide a monitoring tool to collect “per-container-per-logic CPU” Ll/2/3 cache misses and build CUG. Then we propose a CUG-based CAl approach, $\mu$ Tactic. $\mu$ Tactic leverages machine learning models to quantify the cache contention on every cache hierarchy, then reasons out the cache antagonists with CUG. Experiments in production datacenters show that $\mu$ Tactic has a high precision (85+%) and low cost (32 ms), which are better than state-of-the-art approaches.
缓存拮抗剂识别:来自阿里巴巴托管数据中心的实践
在现代数据中心中,将延迟关键型(LC)作业和最佳努力型(BE)作业放在一台主机上可以有效地提高资源效率。但它增加了作业之间的资源争用,严重影响了作业绩效。在阿里巴巴的LC- BE托管数据中心中,我们观察到缓存是CPU中竞争最激烈的资源之一。当发生缓存争用时,识别导致缓存资源争用的拮抗剂是缓解缓存争用的第一步,称为缓存拮抗剂识别(CAl)。然而,由于缓存竞争难以观察和量化,因此识别缓存拮抗剂具有挑战性。在本文中,我们首先提出了缓存使用图(CUG)来精细表征多个CPU微体系结构层次和位置中作业的缓存使用情况,并提供了一个监控工具来收集“每个容器每个逻辑CPU”的Ll/2/3缓存缺失并构建CUG。然后,我们提出了一种基于cug的CAl方法,$\mu$ tactical。$\mu$ tactical利用机器学习模型来量化每个缓存层次结构上的缓存争用,然后用CUG推断出缓存拮抗剂。在生产数据中心的实验表明,$\mu$ tactical具有高精度(85+%)和低成本(32 ms),优于最先进的方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信