DC/RF and Statistic Modeling of Four Terminal InGap/GaAs Bifet for wireless application

C. Wei, A. Metzger, Y. Zhu, C. Cismaru, A. Klimashov, P. Zampardi, R. Ramanrata, Y. Tkachenko
{"title":"DC/RF and Statistic Modeling of Four Terminal InGap/GaAs Bifet for wireless application","authors":"C. Wei, A. Metzger, Y. Zhu, C. Cismaru, A. Klimashov, P. Zampardi, R. Ramanrata, Y. Tkachenko","doi":"10.1109/EMICC.2006.282812","DOIUrl":null,"url":null,"abstract":"InGaP-GaAs based BIFET is a novel technology that integrates HBT and FET onto a single wafer. The technique expands functionality of circuits and reduces the cost. A novel four-terminal large-signal model was developed for accurate DC and RF applications. The device has a p-layer as backgate that has significant impact on the DC/RF characteristics and therefore, the drain current, gate current, leakage current and all charges/capacitances are 3-dimensional functions, which increases the complexity of the model. The model predicts very well IV/leakage curves for all configurations, including the cases when backgate is connected to source or to gate in that the device reduces to three-terminal. For the three terminal cases, the model also predicts RF performances. Statistic model is also presented to predict the variation of Idss/Vp as well as the corner models that define the extremes of characteristics in terms of epi-layer structure","PeriodicalId":269652,"journal":{"name":"2006 European Microwave Integrated Circuits Conference","volume":"33 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2006-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2006 European Microwave Integrated Circuits Conference","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/EMICC.2006.282812","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

Abstract

InGaP-GaAs based BIFET is a novel technology that integrates HBT and FET onto a single wafer. The technique expands functionality of circuits and reduces the cost. A novel four-terminal large-signal model was developed for accurate DC and RF applications. The device has a p-layer as backgate that has significant impact on the DC/RF characteristics and therefore, the drain current, gate current, leakage current and all charges/capacitances are 3-dimensional functions, which increases the complexity of the model. The model predicts very well IV/leakage curves for all configurations, including the cases when backgate is connected to source or to gate in that the device reduces to three-terminal. For the three terminal cases, the model also predicts RF performances. Statistic model is also presented to predict the variation of Idss/Vp as well as the corner models that define the extremes of characteristics in terms of epi-layer structure
无线应用中四端InGap/GaAs比特的DC/RF及统计建模
基于InGaP-GaAs的BIFET是一种将HBT和FET集成到单个晶圆上的新技术。该技术扩展了电路的功能并降低了成本。开发了一种新的四端大信号模型,用于精确的直流和射频应用。该器件有一个p层作为后门,对DC/RF特性有重大影响,因此漏极电流、栅极电流、漏电流和所有电荷/电容都是三维函数,这增加了模型的复杂性。该模型可以很好地预测所有配置的IV/泄漏曲线,包括当后门连接到源或门时,设备减少到三端。对于三种终端情况,该模型还可以预测射频性能。此外,本文还提出了一种统计模型来预测Idss/Vp的变化,以及定义外延层结构特征极值的角点模型
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信