{"title":"A small span theorem for P/Poly-Turing reductions","authors":"J. H. Lutz","doi":"10.1109/SCT.1995.514870","DOIUrl":null,"url":null,"abstract":"This paper investigates the structure of ESPACE under nonuniform Turing reductions that are computed by polynomial-size circuits (P/Poly-Turing reductions). A small span theorem is proven for such reductions. This result says that every language A in ESPACE satisfies at least one of the following two conditions. (i) The lower P/Poly-Turing span of A (consisting of all languages that are P/Poly-Turing reducible to A) has measure 0 in PSPACE. (ii) The upper P/Poly-Turing span of A (consisting of all languages to which A is P/Poly-Turing reducible) has pspace-measure 0, hence measure 0 in ESPACE. The small span theorem implies that every P/Poly-Turing degree has measure 0 in ESPACE, and that there exist languages that are weakly P-many-one complete, but not P/Poly-Turing complete for ESPACE. The method of proof is a significant departure from earlier proofs of small span theorems for weaker types of reductions. P/Poly-Turing span of A (consisting of all languages to which A is P/Poly-Turing reducible) has pspace-measure 0, hence measure 0 in ESPACE. The small span theorem implies that every P/Poly-Turing degree has measure 0 in ESPACE, and that there exist languages that are weakly P-many-one complete, but not P/Poly-Turing complete for ESPACE. The method of proof is a significant departure from earlier proofs of small span theorems for weaker types of reductions.","PeriodicalId":318382,"journal":{"name":"Proceedings of Structure in Complexity Theory. Tenth Annual IEEE Conference","volume":"119 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1995-06-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"10","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of Structure in Complexity Theory. Tenth Annual IEEE Conference","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SCT.1995.514870","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 10
Abstract
This paper investigates the structure of ESPACE under nonuniform Turing reductions that are computed by polynomial-size circuits (P/Poly-Turing reductions). A small span theorem is proven for such reductions. This result says that every language A in ESPACE satisfies at least one of the following two conditions. (i) The lower P/Poly-Turing span of A (consisting of all languages that are P/Poly-Turing reducible to A) has measure 0 in PSPACE. (ii) The upper P/Poly-Turing span of A (consisting of all languages to which A is P/Poly-Turing reducible) has pspace-measure 0, hence measure 0 in ESPACE. The small span theorem implies that every P/Poly-Turing degree has measure 0 in ESPACE, and that there exist languages that are weakly P-many-one complete, but not P/Poly-Turing complete for ESPACE. The method of proof is a significant departure from earlier proofs of small span theorems for weaker types of reductions. P/Poly-Turing span of A (consisting of all languages to which A is P/Poly-Turing reducible) has pspace-measure 0, hence measure 0 in ESPACE. The small span theorem implies that every P/Poly-Turing degree has measure 0 in ESPACE, and that there exist languages that are weakly P-many-one complete, but not P/Poly-Turing complete for ESPACE. The method of proof is a significant departure from earlier proofs of small span theorems for weaker types of reductions.