Hierarchical cooperation of experts in learning from crowds

M. Esmaeily, Saeid Abbassi, H. Yazdi, R. Monsefi
{"title":"Hierarchical cooperation of experts in learning from crowds","authors":"M. Esmaeily, Saeid Abbassi, H. Yazdi, R. Monsefi","doi":"10.1109/ICCKE.2016.7802142","DOIUrl":null,"url":null,"abstract":"Crowdsourcing allows us to utilize non-expert annotators in learning concept instead of using reference model. In machine learning domain, there are many papers which addressed this problem by assuming independency between annotators. While this assumption does not hold in real world's problems. In this paper we propose a hierarchical framework to model dependency between annotators. This cooperation of experts make the predicted model robust to deviation from ground-truth. Parameters are obtained using maximum likelihood estimator with an iterative EM algorithm. The mathematical derivations indicate that the precision of a follower annotator depends on precision of its followee expert. Experimental results on synthetic, UCI and MNIST datasets show superiority of the proposed algorithm in comparison with its competitors.","PeriodicalId":205768,"journal":{"name":"2016 6th International Conference on Computer and Knowledge Engineering (ICCKE)","volume":"30 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2016 6th International Conference on Computer and Knowledge Engineering (ICCKE)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICCKE.2016.7802142","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

Crowdsourcing allows us to utilize non-expert annotators in learning concept instead of using reference model. In machine learning domain, there are many papers which addressed this problem by assuming independency between annotators. While this assumption does not hold in real world's problems. In this paper we propose a hierarchical framework to model dependency between annotators. This cooperation of experts make the predicted model robust to deviation from ground-truth. Parameters are obtained using maximum likelihood estimator with an iterative EM algorithm. The mathematical derivations indicate that the precision of a follower annotator depends on precision of its followee expert. Experimental results on synthetic, UCI and MNIST datasets show superiority of the proposed algorithm in comparison with its competitors.
专家在群体学习中的分层合作
众包允许我们利用非专业的注释者来学习概念,而不是使用参考模型。在机器学习领域,有许多论文通过假设注释器之间的独立性来解决这个问题。然而这个假设并不适用于现实世界的问题。在本文中,我们提出了一个分层框架来建模注释器之间的依赖关系。专家的这种合作使预测模型对偏离基本事实具有鲁棒性。利用极大似然估计和迭代EM算法获得参数。数学推导表明,跟随注释器的精度取决于其跟随专家的精度。在合成数据集、UCI数据集和MNIST数据集上的实验结果表明了该算法的优越性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信