Fast generation of centroids for MAP-Elites

Jean-Baptiste Mouret
{"title":"Fast generation of centroids for MAP-Elites","authors":"Jean-Baptiste Mouret","doi":"10.1145/3583133.3590726","DOIUrl":null,"url":null,"abstract":"The use of MAP-Elites in high-dimensional behavioral spaces requires a scalable method for dividing the space into regions of equal volume. So far, the recommended approach to generate these regions has been the Centroidal Voronoi Tesselation (CVT), but this algorithm has a significant computational cost (typically a few minutes for more than 50 dimensions). In this paper, we investigate alternative approaches to generate regions of equal volumes for MAP-Elites. In particular, we experiment with generating region centroids with low-discrepancy sequences (Sobol, Halton), pseudorandom numbers, and a simple blue noise generator. Our results show that, for spaces with 100 dimensions, most methods perform similarly, including pseudo-random numbers. For spaces with dimensions between 5 and 50, a CVT generates significantly better centroids. In lower dimensions (1--5), a scrambled Sobol sequence generates well-spread centroids in a few milliseconds.","PeriodicalId":422029,"journal":{"name":"Proceedings of the Companion Conference on Genetic and Evolutionary Computation","volume":"36 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-07-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the Companion Conference on Genetic and Evolutionary Computation","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3583133.3590726","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

The use of MAP-Elites in high-dimensional behavioral spaces requires a scalable method for dividing the space into regions of equal volume. So far, the recommended approach to generate these regions has been the Centroidal Voronoi Tesselation (CVT), but this algorithm has a significant computational cost (typically a few minutes for more than 50 dimensions). In this paper, we investigate alternative approaches to generate regions of equal volumes for MAP-Elites. In particular, we experiment with generating region centroids with low-discrepancy sequences (Sobol, Halton), pseudorandom numbers, and a simple blue noise generator. Our results show that, for spaces with 100 dimensions, most methods perform similarly, including pseudo-random numbers. For spaces with dimensions between 5 and 50, a CVT generates significantly better centroids. In lower dimensions (1--5), a scrambled Sobol sequence generates well-spread centroids in a few milliseconds.
快速生成map - elite的质心
在高维行为空间中使用map - elite需要一种可扩展的方法来将空间划分为等量的区域。到目前为止,推荐的生成这些区域的方法是Centroidal Voronoi Tesselation (CVT),但该算法具有显着的计算成本(对于超过50个维度通常需要几分钟)。在本文中,我们研究了生成等体积map - elite区域的替代方法。特别是,我们尝试用低差异序列(Sobol, Halton)、伪随机数和一个简单的蓝色噪声发生器生成区域质心。我们的结果表明,对于具有100维的空间,大多数方法执行相似,包括伪随机数。对于尺寸在5到50之间的空间,CVT产生的质心明显更好。在较低的维数(1- 5)中,一个打乱的Sobol序列在几毫秒内生成分布良好的质心。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信