Modeling VBR traffic with autoregressive Gaussian processes

Jung-Shian Li
{"title":"Modeling VBR traffic with autoregressive Gaussian processes","authors":"Jung-Shian Li","doi":"10.1109/ICON.2000.875835","DOIUrl":null,"url":null,"abstract":"Previous studies about network traffic measurement show that today's network traffic exhibits long-range dependence (LRD). The computation effort of generating LRD traffic is directly proportional to the length of the traces. This paper presents a traces-generating framework based on TES (transform-expand-samples) and synthetic autoregressive Gaussian processes. The proposed scheme can fit both the probability density function and the autocorrelation of the empirical traces. Besides, the computation effort of this scheme is independent of the length of the LRD traces.","PeriodicalId":191244,"journal":{"name":"Proceedings IEEE International Conference on Networks 2000 (ICON 2000). Networking Trends and Challenges in the New Millennium","volume":"405 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2000-09-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings IEEE International Conference on Networks 2000 (ICON 2000). Networking Trends and Challenges in the New Millennium","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICON.2000.875835","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

Previous studies about network traffic measurement show that today's network traffic exhibits long-range dependence (LRD). The computation effort of generating LRD traffic is directly proportional to the length of the traces. This paper presents a traces-generating framework based on TES (transform-expand-samples) and synthetic autoregressive Gaussian processes. The proposed scheme can fit both the probability density function and the autocorrelation of the empirical traces. Besides, the computation effort of this scheme is independent of the length of the LRD traces.
用自回归高斯过程建模VBR流量
以往的网络流量测量研究表明,当今的网络流量表现出远程依赖(LRD)。产生LRD流量的计算工作量与路径的长度成正比。本文提出了一种基于TES(变换-扩展-样本)和合成自回归高斯过程的轨迹生成框架。该方案既能拟合概率密度函数,又能拟合经验迹线的自相关性。此外,该方案的计算量与LRD轨迹的长度无关。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信