A Scalable Big Data Test Framework

Nan Li, Anthony Escalona, Yun Guo, Jeff Offutt
{"title":"A Scalable Big Data Test Framework","authors":"Nan Li, Anthony Escalona, Yun Guo, Jeff Offutt","doi":"10.1109/ICST.2015.7102619","DOIUrl":null,"url":null,"abstract":"This paper identifies three problems when testing software that uses Hadoop-based big data techniques. First, processing big data takes a long time. Second, big data is transferred and transformed among many services. Do we need to validate the data at every transition point? Third, how should we validate the transferred and transformed data? We are developing a novel big data test framework to address these problems. The test framework generates a small and representative data set from an original large data set using input space partition testing. Using this data set for development and testing would not hinder the continuous integration and delivery when using agile processes. The test framework also accesses and validates data at various transition points when data is transferred and transformed.","PeriodicalId":401414,"journal":{"name":"2015 IEEE 8th International Conference on Software Testing, Verification and Validation (ICST)","volume":"12 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2015-04-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"19","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2015 IEEE 8th International Conference on Software Testing, Verification and Validation (ICST)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICST.2015.7102619","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 19

Abstract

This paper identifies three problems when testing software that uses Hadoop-based big data techniques. First, processing big data takes a long time. Second, big data is transferred and transformed among many services. Do we need to validate the data at every transition point? Third, how should we validate the transferred and transformed data? We are developing a novel big data test framework to address these problems. The test framework generates a small and representative data set from an original large data set using input space partition testing. Using this data set for development and testing would not hinder the continuous integration and delivery when using agile processes. The test framework also accesses and validates data at various transition points when data is transferred and transformed.
一个可扩展的大数据测试框架
本文指出了在测试使用基于hadoop的大数据技术的软件时存在的三个问题。第一,处理大数据耗时长。第二,大数据在多个服务之间传递和转化。我们是否需要在每个转换点验证数据?第三,我们应该如何验证传输和转换的数据?我们正在开发一个新的大数据测试框架来解决这些问题。测试框架使用输入空间分区测试从原始的大数据集生成一个小而有代表性的数据集。在使用敏捷过程时,将此数据集用于开发和测试不会妨碍持续集成和交付。当数据被传输和转换时,测试框架还在不同的转换点访问和验证数据。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信