Extract and Aggregate: A Novel Domain-Independent Approach to Factual Data Verification

Anton Chernyavskiy, Dmitry I. Ilvovsky
{"title":"Extract and Aggregate: A Novel Domain-Independent Approach to Factual Data Verification","authors":"Anton Chernyavskiy, Dmitry I. Ilvovsky","doi":"10.18653/v1/D19-6612","DOIUrl":null,"url":null,"abstract":"Triggered by Internet development, a large amount of information is published in online sources. However, it is a well-known fact that publications are inundated with inaccurate data. That is why fact-checking has become a significant topic in the last 5 years. It is widely accepted that factual data verification is a challenge even for the experts. This paper presents a domain-independent fact checking system. It can solve the fact verification problem entirely or at the individual stages. The proposed model combines various advanced methods of text data analysis, such as BERT and Infersent. The theoretical and empirical study of the system features is carried out. Based on FEVER and Fact Checking Challenge test-collections, experimental results demonstrate that our model can achieve the score on a par with state-of-the-art models designed by the specificity of particular datasets.","PeriodicalId":153447,"journal":{"name":"Proceedings of the Second Workshop on Fact Extraction and VERification (FEVER)","volume":"2017 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1900-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"10","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the Second Workshop on Fact Extraction and VERification (FEVER)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.18653/v1/D19-6612","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 10

Abstract

Triggered by Internet development, a large amount of information is published in online sources. However, it is a well-known fact that publications are inundated with inaccurate data. That is why fact-checking has become a significant topic in the last 5 years. It is widely accepted that factual data verification is a challenge even for the experts. This paper presents a domain-independent fact checking system. It can solve the fact verification problem entirely or at the individual stages. The proposed model combines various advanced methods of text data analysis, such as BERT and Infersent. The theoretical and empirical study of the system features is carried out. Based on FEVER and Fact Checking Challenge test-collections, experimental results demonstrate that our model can achieve the score on a par with state-of-the-art models designed by the specificity of particular datasets.
提取与聚合:一种新的领域无关的事实数据验证方法
由于互联网的发展,大量的信息被发布在网络资源上。然而,众所周知的事实是,出版物中充斥着不准确的数据。这就是为什么事实核查在过去5年成为一个重要话题的原因。人们普遍认为,即使对专家来说,事实数据验证也是一项挑战。提出了一个独立于领域的事实检验系统。它可以解决整个或个别阶段的事实验证问题。该模型结合了各种先进的文本数据分析方法,如BERT和intersent。对系统特点进行了理论和实证研究。基于FEVER和Fact Checking Challenge测试集,实验结果表明,我们的模型可以达到与特定数据集特异性设计的最先进模型相当的分数。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信