Instruction-level characterization of scientific computing applications using hardware performance counters

Yong Luo, K. Cameron
{"title":"Instruction-level characterization of scientific computing applications using hardware performance counters","authors":"Yong Luo, K. Cameron","doi":"10.1109/WWC.1998.809368","DOIUrl":null,"url":null,"abstract":"The paper provides characterization methods based on empirical performance counter measurements. In particular, we provide an instruction-level characterization derived empirically in an effort to demonstrate how architectural limitations in underlying hardware will affect the performance of existing codes. Preliminary results provide promise in code characterization, and empirical/analytical modeling. These include the ability to quantify outstanding miss utilization and stall time attributable to architectural limitations in the CPU and the memory hierarchy. This work further promises insight into quantifying bounds for CPI/sub 0/ or the ideal CPI with infinite, perfect L1 cache. In general, if we can characterize workloads using parameters that are independent of architecture, such as this work, then we can more appropriately compare different architectures in an effort to direct processor/code development.","PeriodicalId":190931,"journal":{"name":"Workload Characterization: Methodology and Case Studies. Based on the First Workshop on Workload Characterization","volume":"31 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1998-11-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"9","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Workload Characterization: Methodology and Case Studies. Based on the First Workshop on Workload Characterization","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/WWC.1998.809368","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 9

Abstract

The paper provides characterization methods based on empirical performance counter measurements. In particular, we provide an instruction-level characterization derived empirically in an effort to demonstrate how architectural limitations in underlying hardware will affect the performance of existing codes. Preliminary results provide promise in code characterization, and empirical/analytical modeling. These include the ability to quantify outstanding miss utilization and stall time attributable to architectural limitations in the CPU and the memory hierarchy. This work further promises insight into quantifying bounds for CPI/sub 0/ or the ideal CPI with infinite, perfect L1 cache. In general, if we can characterize workloads using parameters that are independent of architecture, such as this work, then we can more appropriately compare different architectures in an effort to direct processor/code development.
使用硬件性能计数器的科学计算应用程序的指令级表征
本文提供了基于经验性能度量的表征方法。特别是,我们提供了一个基于经验的指令级特征,以演示底层硬件中的架构限制将如何影响现有代码的性能。初步结果为代码表征和经验/分析建模提供了希望。其中包括量化由于CPU和内存层次结构中的体系结构限制而导致的未完成利用率和停机时间的能力。这项工作进一步有望深入了解CPI/sub 0/或具有无限完美L1缓存的理想CPI的量化界限。一般来说,如果我们可以使用独立于体系结构的参数来描述工作负载,比如这项工作,那么我们就可以更恰当地比较不同的体系结构,从而指导处理器/代码开发。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信