Intelligent design methods for smart materials

M. Fathi-Torbaghan, L. Hildebrand
{"title":"Intelligent design methods for smart materials","authors":"M. Fathi-Torbaghan, L. Hildebrand","doi":"10.1109/IPMM.1999.791519","DOIUrl":null,"url":null,"abstract":"The design process of modern smart materials often require the use of complex system models. These models cannot be derived easily due to the complex knowledge that describe the process. In some cases, model parameters can be gained using neural networks, but these systems allow only a one-way simulation from input values to learned output values. If evaluation in the other direction is needed, these models allow no direct evaluation. This task can be solved using modern techniques like evolutionary algorithms and fuzzy logic. The use of such a combination allows evaluation of the learned simulation models in the direction from output to the input. An example can be given from the field of screw rotor design.","PeriodicalId":194215,"journal":{"name":"Proceedings of the Second International Conference on Intelligent Processing and Manufacturing of Materials. IPMM'99 (Cat. No.99EX296)","volume":"32 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1999-07-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the Second International Conference on Intelligent Processing and Manufacturing of Materials. IPMM'99 (Cat. No.99EX296)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IPMM.1999.791519","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

Abstract

The design process of modern smart materials often require the use of complex system models. These models cannot be derived easily due to the complex knowledge that describe the process. In some cases, model parameters can be gained using neural networks, but these systems allow only a one-way simulation from input values to learned output values. If evaluation in the other direction is needed, these models allow no direct evaluation. This task can be solved using modern techniques like evolutionary algorithms and fuzzy logic. The use of such a combination allows evaluation of the learned simulation models in the direction from output to the input. An example can be given from the field of screw rotor design.
智能材料的智能设计方法
现代智能材料的设计过程往往需要使用复杂的系统模型。由于描述过程的复杂知识,这些模型不能轻易推导出来。在某些情况下,可以使用神经网络获得模型参数,但这些系统只允许从输入值到学习输出值的单向模拟。如果需要另一个方向的评估,这些模型不允许直接评估。这个任务可以用进化算法和模糊逻辑等现代技术来解决。这种组合的使用允许在从输出到输入的方向上对学习的仿真模型进行评估。可以从螺杆转子设计领域给出一个例子。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信