An Improved Gaussian Mixture Model Based Hole-filling Algorithm Exploiting Depth Information

Tiantian Zhu, Pan Gao
{"title":"An Improved Gaussian Mixture Model Based Hole-filling Algorithm Exploiting Depth Information","authors":"Tiantian Zhu, Pan Gao","doi":"10.1109/VCIP47243.2019.8965964","DOIUrl":null,"url":null,"abstract":"Virtual views generation is of great significance in free viewpoint video (FVV) as it can avoid the need to transmit a large volume of video data. An important issue in generating virtual views is how to fill the holes caused by occlusion. Using the Gaussian mixture model (GMM) to generate the background reference image is a commonly used hole-filling method. However, GMM usually has poor performance for sequences with reciprocal motion. In this paper, we propose an improved GMM-based method. To avoid the foreground pixels misclassified as the background pixels, we use depth information to adjust the learning rate in GMM. Foreground pixel is given a smaller learning rate than the background. Further, a refined foreground depth correlation (FDC) algorithm is proposed, which generates the background frame by tracking the change of the foreground depth in the temporal direction. In contrast to existing algorithms, we use a sliding window to obtain multiple background reference frames. These reference frames are then fused together to generate a more accurate background frame. Finally, we adaptively choose the background pixel from the GMM and FDC for hole filling. The experimental results show that subjective gain can be achieved, and significant objective gain can be observed in reciprocal motion sequences.","PeriodicalId":388109,"journal":{"name":"2019 IEEE Visual Communications and Image Processing (VCIP)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 IEEE Visual Communications and Image Processing (VCIP)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/VCIP47243.2019.8965964","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Virtual views generation is of great significance in free viewpoint video (FVV) as it can avoid the need to transmit a large volume of video data. An important issue in generating virtual views is how to fill the holes caused by occlusion. Using the Gaussian mixture model (GMM) to generate the background reference image is a commonly used hole-filling method. However, GMM usually has poor performance for sequences with reciprocal motion. In this paper, we propose an improved GMM-based method. To avoid the foreground pixels misclassified as the background pixels, we use depth information to adjust the learning rate in GMM. Foreground pixel is given a smaller learning rate than the background. Further, a refined foreground depth correlation (FDC) algorithm is proposed, which generates the background frame by tracking the change of the foreground depth in the temporal direction. In contrast to existing algorithms, we use a sliding window to obtain multiple background reference frames. These reference frames are then fused together to generate a more accurate background frame. Finally, we adaptively choose the background pixel from the GMM and FDC for hole filling. The experimental results show that subjective gain can be achieved, and significant objective gain can be observed in reciprocal motion sequences.
利用深度信息的改进高斯混合模型充填算法
虚拟视图生成在自由视点视频(FVV)中具有重要的意义,因为它可以避免传输大量的视频数据。生成虚拟视图的一个重要问题是如何填充遮挡造成的空洞。利用高斯混合模型(GMM)生成背景参考图像是一种常用的补孔方法。然而,对于具有互反运动的序列,GMM通常表现不佳。本文提出了一种改进的基于gmm的方法。为了避免前景像素被误分类为背景像素,我们在GMM中使用深度信息来调整学习率。前景像素被赋予比背景更小的学习率。进一步,提出了一种改进的前景深度相关(FDC)算法,通过跟踪前景深度在时间方向上的变化来生成背景帧。与现有算法相比,我们使用滑动窗口来获取多个背景参考帧。然后将这些参考帧融合在一起以生成更精确的背景帧。最后,自适应地从GMM和FDC中选择背景像素进行补孔。实验结果表明,该方法可以实现主观增益,并且在反向运动序列中可以观察到明显的客观增益。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信