Rotated k-means hashing for image retrieval problems

Li-Bin Zheng, Wing W. Y. Ng
{"title":"Rotated k-means hashing for image retrieval problems","authors":"Li-Bin Zheng, Wing W. Y. Ng","doi":"10.1109/ICMLC.2014.7009121","DOIUrl":null,"url":null,"abstract":"Hamming embedding is shown to be efficient for solving large scale image retrieval problems. The k-means hashing is applied to find compact binary codes for hashing. On the other hand, the iterative quantization hashing has been proposed to find better hash codes by minimizing the quantization error between binary hash code and hash function output values of images. The k-means hashing distorts the hypercube of binary codes to minimize quantization error while the iterative quantization hashing rotates the feature vector of images to minimize the quantization error. The proposed rotated k-means hashing combines the distortion of hypercube with the rotation of feature vector of images for further minimization of quantization error. Experimental results show the RKMH preserves good similarities among images.","PeriodicalId":335296,"journal":{"name":"2014 International Conference on Machine Learning and Cybernetics","volume":"71 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2014-07-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2014 International Conference on Machine Learning and Cybernetics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICMLC.2014.7009121","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

Abstract

Hamming embedding is shown to be efficient for solving large scale image retrieval problems. The k-means hashing is applied to find compact binary codes for hashing. On the other hand, the iterative quantization hashing has been proposed to find better hash codes by minimizing the quantization error between binary hash code and hash function output values of images. The k-means hashing distorts the hypercube of binary codes to minimize quantization error while the iterative quantization hashing rotates the feature vector of images to minimize the quantization error. The proposed rotated k-means hashing combines the distortion of hypercube with the rotation of feature vector of images for further minimization of quantization error. Experimental results show the RKMH preserves good similarities among images.
旋转k-means散列用于图像检索问题
汉明嵌入是解决大规模图像检索问题的有效方法。k-means散列用于查找用于散列的紧凑二进制代码。另一方面,提出了迭代量化哈希,通过最小化二进制哈希码与图像哈希函数输出值之间的量化误差来寻找更好的哈希码。k-means哈希法通过扭曲二进制码的超立方体来减小量化误差,迭代量化哈希法通过旋转图像的特征向量来减小量化误差。所提出的旋转k-means哈希将超立方体的畸变与图像特征向量的旋转相结合,进一步减小量化误差。实验结果表明,RKMH保持了图像间良好的相似性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信