Consistent hemodynamic response estimation function in fMRI using sparse prior information

A. Seghouane, L. Johnston
{"title":"Consistent hemodynamic response estimation function in fMRI using sparse prior information","authors":"A. Seghouane, L. Johnston","doi":"10.1109/ISBI.2014.6867941","DOIUrl":null,"url":null,"abstract":"Non-parametric Hemodynamic Response Function (HRF) estimation in noisy functional Magnetic Resonance Imaging (fMRI) plays an important role when investigating the temporal dynamics of regional brain responses during activation. Making use of a semiparametric model to characterize the fMRI time series and a sparsity assumption on the HRF, a new method for voxelwise non-parametric HRF estimation is derived in this paper. The proposed method consistently estimates the HRF by applying first order differencing to the fMRI time series samples and introducing a regularization penalty in the minimization problem to promote sparsity of the HRF coefficients. Based on the likelihood ratio test (LRT) principle, a new statistical test for detecting activated pixels is proposed using the estimated HRF. The effectiveness of the HRF estimation method is illustrated on both simulated and experimental fMRI data from a visual experiment.","PeriodicalId":440405,"journal":{"name":"2014 IEEE 11th International Symposium on Biomedical Imaging (ISBI)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2014-07-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2014 IEEE 11th International Symposium on Biomedical Imaging (ISBI)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISBI.2014.6867941","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 6

Abstract

Non-parametric Hemodynamic Response Function (HRF) estimation in noisy functional Magnetic Resonance Imaging (fMRI) plays an important role when investigating the temporal dynamics of regional brain responses during activation. Making use of a semiparametric model to characterize the fMRI time series and a sparsity assumption on the HRF, a new method for voxelwise non-parametric HRF estimation is derived in this paper. The proposed method consistently estimates the HRF by applying first order differencing to the fMRI time series samples and introducing a regularization penalty in the minimization problem to promote sparsity of the HRF coefficients. Based on the likelihood ratio test (LRT) principle, a new statistical test for detecting activated pixels is proposed using the estimated HRF. The effectiveness of the HRF estimation method is illustrated on both simulated and experimental fMRI data from a visual experiment.
基于稀疏先验信息的fMRI一致性血流动力学响应估计函数
噪声功能磁共振成像(fMRI)中的非参数血流动力学响应函数(HRF)估计在研究激活过程中脑区域反应的时间动态方面起着重要作用。利用半参数模型对fMRI时间序列进行表征,并对HRF进行稀疏性假设,提出了一种体向非参数HRF估计的新方法。该方法通过对fMRI时间序列样本应用一阶差分并在最小化问题中引入正则化惩罚来提高HRF系数的稀疏性,从而一致地估计出HRF。基于似然比检验(LRT)原理,提出了一种利用估计的HRF检测激活像素的统计检验方法。仿真和实验结果表明了HRF估计方法的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信