Window-based feature extraction framework for machine-printed/handwritten and Arabic/Latin text discrimination

Anis Mezghani, Fouad Slimane, S. Kanoun, M. Kherallah
{"title":"Window-based feature extraction framework for machine-printed/handwritten and Arabic/Latin text discrimination","authors":"Anis Mezghani, Fouad Slimane, S. Kanoun, M. Kherallah","doi":"10.1109/ICCP.2016.7737168","DOIUrl":null,"url":null,"abstract":"In this paper, we propose a new writing type and script text classification technique to recognize the identity of texts extracted from heterogeneous document images. English, French and Arabic languages are used in these documents with mixed handwritten and machine-printed types. In order to identify each text-line/word image, we propose to use 23 features computed on a fixed-length sliding window. Gaussian Mixture Models (GMMs) are used to achieve the classification objective. This framework has been tested on machine-printed and handwritten text-blocks, text-lines and words extracted from different document images of the Maurdor database. Experimental results reveal the effectiveness of our proposed system in writing type and script identification.","PeriodicalId":343658,"journal":{"name":"2016 IEEE 12th International Conference on Intelligent Computer Communication and Processing (ICCP)","volume":"364 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2016 IEEE 12th International Conference on Intelligent Computer Communication and Processing (ICCP)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICCP.2016.7737168","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

Abstract

In this paper, we propose a new writing type and script text classification technique to recognize the identity of texts extracted from heterogeneous document images. English, French and Arabic languages are used in these documents with mixed handwritten and machine-printed types. In order to identify each text-line/word image, we propose to use 23 features computed on a fixed-length sliding window. Gaussian Mixture Models (GMMs) are used to achieve the classification objective. This framework has been tested on machine-printed and handwritten text-blocks, text-lines and words extracted from different document images of the Maurdor database. Experimental results reveal the effectiveness of our proposed system in writing type and script identification.
基于窗口的机器打印/手写和阿拉伯/拉丁文本识别特征提取框架
在本文中,我们提出了一种新的书写类型和脚本文本分类技术来识别从异构文档图像中提取的文本的身份。这些文件使用英文、法文和阿拉伯文,并混合使用手写和机印字体。为了识别每个文本行/单词图像,我们建议在固定长度的滑动窗口上使用23个特征。高斯混合模型(GMMs)用于实现分类目标。该框架已经在从Maurdor数据库的不同文档图像中提取的机器打印和手写文本块、文本行和单词上进行了测试。实验结果表明,该系统在文字类型和文字识别方面是有效的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信