Network Traffic Anomaly Detection Based on Dynamic Programming

Qing Yu, Xi-Wu Gu
{"title":"Network Traffic Anomaly Detection Based on Dynamic Programming","authors":"Qing Yu, Xi-Wu Gu","doi":"10.1109/CIIS.2017.18","DOIUrl":null,"url":null,"abstract":"In this paper, an optimum dynamic programming (DP) based time-normalization algorithm is designed for Network traffic anomaly detection. The two sets of data matched namely the sample data and the actual data, will need to calculate the time normalized distance through dynamic programming so as to achieve the effect of the anomaly detection, and have been using dynamic programming matching symmetry. By analyzing the experimental data, the traffic anomaly detection based on symmetry dynamic programming verify the improvement in the accuracy.","PeriodicalId":254342,"journal":{"name":"2017 International Conference on Computing Intelligence and Information System (CIIS)","volume":"46 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-04-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"11","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 International Conference on Computing Intelligence and Information System (CIIS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CIIS.2017.18","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 11

Abstract

In this paper, an optimum dynamic programming (DP) based time-normalization algorithm is designed for Network traffic anomaly detection. The two sets of data matched namely the sample data and the actual data, will need to calculate the time normalized distance through dynamic programming so as to achieve the effect of the anomaly detection, and have been using dynamic programming matching symmetry. By analyzing the experimental data, the traffic anomaly detection based on symmetry dynamic programming verify the improvement in the accuracy.
基于动态规划的网络流量异常检测
本文设计了一种基于最优动态规划(DP)的网络流量异常检测时间归一化算法。对于匹配的两组数据即样本数据和实际数据,需要通过动态规划计算时间归一化距离,从而达到异常检测的效果,一直采用动态规划匹配对称。通过对实验数据的分析,验证了基于对称动态规划的流量异常检测精度的提高。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信