An unconditionally stable finite difference scheme systems described by second order partial differential equations

P. Augusta, B. Cichy, K. Gałkowski, E. Rogers
{"title":"An unconditionally stable finite difference scheme systems described by second order partial differential equations","authors":"P. Augusta, B. Cichy, K. Gałkowski, E. Rogers","doi":"10.1109/NDS.2015.7332655","DOIUrl":null,"url":null,"abstract":"An unconditionally stable finite difference scheme for systems whose dynamics are described by a second-order partial differential equation is developed. The scheme is motivated by the well-known Crank-Nicolson discretization which was developed for first-order systems. The stability of the finite-difference scheme is analysed by von Neumann's method. Using the new scheme, a discrete in time and space model of a deformable mirror is derived as the basis for control law design. The convergence of this scheme for various values of the discretization parameters is checked by numerical simulations.","PeriodicalId":284922,"journal":{"name":"2015 IEEE 9th International Workshop on Multidimensional (nD) Systems (nDS)","volume":"137 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2015-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"9","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2015 IEEE 9th International Workshop on Multidimensional (nD) Systems (nDS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/NDS.2015.7332655","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 9

Abstract

An unconditionally stable finite difference scheme for systems whose dynamics are described by a second-order partial differential equation is developed. The scheme is motivated by the well-known Crank-Nicolson discretization which was developed for first-order systems. The stability of the finite-difference scheme is analysed by von Neumann's method. Using the new scheme, a discrete in time and space model of a deformable mirror is derived as the basis for control law design. The convergence of this scheme for various values of the discretization parameters is checked by numerical simulations.
一类由二阶偏微分方程描述的无条件稳定有限差分格式系统
建立了二阶偏微分方程系统的无条件稳定有限差分格式。该方案的动机是著名的Crank-Nicolson离散化,这是为一阶系统开发的。用冯诺依曼方法分析了有限差分格式的稳定性。在此基础上,推导了可变形镜的时空离散模型,作为控制律设计的基础。数值模拟验证了该格式对不同离散参数值的收敛性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信