A Novel Multi-Objective Topology for In-Motion WPT Systems with an Input DG Source

Amir Babaki, S. Vaez‐Zadeh, Majid Moghaddam, A. Zakerian
{"title":"A Novel Multi-Objective Topology for In-Motion WPT Systems with an Input DG Source","authors":"Amir Babaki, S. Vaez‐Zadeh, Majid Moghaddam, A. Zakerian","doi":"10.1109/PEDSTC.2019.8697891","DOIUrl":null,"url":null,"abstract":"On-road dynamic charging of electric vehicles with distributed generation (DG) sources has emerged recently as a cost-saving means for modern transportation. The resonant converter as a common WPT topology is not a suitable choice here due to several deficiencies. In this paper, a novel low-frequency multi-objective WPT topology, based on loosely coupled flayback converter with the compatible energy recovery circuit is proposed against the restriction of resonant converter. In this system, an input DG source (photovoltaic (PV)) produces its maximum possible power to supply the EV according to the MPPT algorithm. The remaining energy is stored in the back-up battery during each switching interval and can be injected to the EV drive train, whenever the PV power is not in access. Extensive simulation results using MATLAB-Simulink is presented to validate the proposed WPT topology and its multi-stage control system.","PeriodicalId":296229,"journal":{"name":"2019 10th International Power Electronics, Drive Systems and Technologies Conference (PEDSTC)","volume":"28 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 10th International Power Electronics, Drive Systems and Technologies Conference (PEDSTC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/PEDSTC.2019.8697891","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

Abstract

On-road dynamic charging of electric vehicles with distributed generation (DG) sources has emerged recently as a cost-saving means for modern transportation. The resonant converter as a common WPT topology is not a suitable choice here due to several deficiencies. In this paper, a novel low-frequency multi-objective WPT topology, based on loosely coupled flayback converter with the compatible energy recovery circuit is proposed against the restriction of resonant converter. In this system, an input DG source (photovoltaic (PV)) produces its maximum possible power to supply the EV according to the MPPT algorithm. The remaining energy is stored in the back-up battery during each switching interval and can be injected to the EV drive train, whenever the PV power is not in access. Extensive simulation results using MATLAB-Simulink is presented to validate the proposed WPT topology and its multi-stage control system.
一种具有DG输入源的运动中WPT系统的新型多目标拓扑
基于分布式电源的电动汽车道路动态充电作为一种节约成本的现代交通方式,近年来逐渐兴起。谐振变换器作为一种常见的WPT拓扑结构在这里不是一个合适的选择,由于几个缺陷。本文针对谐振变换器的限制,提出了一种基于松耦合反放变换器和兼容能量回收电路的低频多目标WPT拓扑结构。在该系统中,输入DG源(PV)根据MPPT算法产生最大可能功率供电给EV。在每个切换间隔期间,剩余的能量存储在备用电池中,当光伏电源无法接入时,可以将剩余能量注入电动汽车传动系统。利用MATLAB-Simulink进行了大量仿真,验证了所提出的WPT拓扑结构及其多级控制系统。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信