Graph Embeddings for Outage Prediction

Rashid Baembitov, M. Kezunovic, Z. Obradovic
{"title":"Graph Embeddings for Outage Prediction","authors":"Rashid Baembitov, M. Kezunovic, Z. Obradovic","doi":"10.1109/NAPS52732.2021.9654696","DOIUrl":null,"url":null,"abstract":"This paper discusses how the risk of electricity grid outages is predicted using machine learning on historical data enhanced by graph embeddings of the distribution network. The process of graph creation using different embedding approaches is described. Several graph constructing strategies are used to create a graph, which is then transformed into the form acceptable for ML algorithm training. The impact of incorporating different graph embeddings on outage risk prediction is evaluated. The method used for graph embeddings is N ode2Vec. The grid search is performed to find optimal hyperparameters of N ode2Vec. The resulting accuracy metrics for a set of different hyperparameters are presented. The resulting metrics are compared against base scenario, where no graph embeddings were used.","PeriodicalId":123077,"journal":{"name":"2021 North American Power Symposium (NAPS)","volume":"33 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-11-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 North American Power Symposium (NAPS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/NAPS52732.2021.9654696","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5

Abstract

This paper discusses how the risk of electricity grid outages is predicted using machine learning on historical data enhanced by graph embeddings of the distribution network. The process of graph creation using different embedding approaches is described. Several graph constructing strategies are used to create a graph, which is then transformed into the form acceptable for ML algorithm training. The impact of incorporating different graph embeddings on outage risk prediction is evaluated. The method used for graph embeddings is N ode2Vec. The grid search is performed to find optimal hyperparameters of N ode2Vec. The resulting accuracy metrics for a set of different hyperparameters are presented. The resulting metrics are compared against base scenario, where no graph embeddings were used.
停机预测的图嵌入
本文讨论了如何利用配电网图嵌入增强的历史数据的机器学习来预测电网中断的风险。描述了使用不同嵌入方法创建图形的过程。使用几种图构造策略来创建图,然后将其转换为ML算法训练可接受的形式。评估了不同图嵌入对停电风险预测的影响。图嵌入的方法是N ode2Vec。通过网格搜索找到N ode2Vec的最优超参数。给出了一组不同超参数的精度度量。将结果度量与没有使用图嵌入的基本场景进行比较。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信