{"title":"Intrinsic microcrystalline silicon deposited by remote PECVD: a new thin-film photovoltaic material","authors":"A. Wang, G. Lucovsky","doi":"10.1109/PVSC.1990.111882","DOIUrl":null,"url":null,"abstract":"Remote plasma-enhanced chemical-vapor deposition (remote PECVD) was used to deposit photovoltaic (PV)-grade intrinsic and n- and p-type a-Si:H, heavily doped n- and p-type mu c-Si thin films, and a photovoltaic material, a highly photoconductive intrinsic mu c-Si material. This material is deposited by compensating the native defects in the as-deposited, undoped materials with a relatively small amount of boron. The dark conductivity of this compensated intrinsic material is reduced significantly with respect to the undoped mu c-Si, and the films display a level of photoconductivity comparable to that of PV-grade intrinsic a-Si:H. In addition, the material shows no degradation in photoconductivity after long-term exposure to intense illumination ( approximately 50 mW/cm/sup 2/ for 6 h).<<ETX>>","PeriodicalId":211778,"journal":{"name":"IEEE Conference on Photovoltaic Specialists","volume":"26 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1990-05-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"19","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Conference on Photovoltaic Specialists","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/PVSC.1990.111882","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 19
Abstract
Remote plasma-enhanced chemical-vapor deposition (remote PECVD) was used to deposit photovoltaic (PV)-grade intrinsic and n- and p-type a-Si:H, heavily doped n- and p-type mu c-Si thin films, and a photovoltaic material, a highly photoconductive intrinsic mu c-Si material. This material is deposited by compensating the native defects in the as-deposited, undoped materials with a relatively small amount of boron. The dark conductivity of this compensated intrinsic material is reduced significantly with respect to the undoped mu c-Si, and the films display a level of photoconductivity comparable to that of PV-grade intrinsic a-Si:H. In addition, the material shows no degradation in photoconductivity after long-term exposure to intense illumination ( approximately 50 mW/cm/sup 2/ for 6 h).<>