Model Selection Based on Kalman Temporal Differences Learning

Takehiro Kitao, Masato Shirai, T. Miura
{"title":"Model Selection Based on Kalman Temporal Differences Learning","authors":"Takehiro Kitao, Masato Shirai, T. Miura","doi":"10.1109/CIC.2017.00017","DOIUrl":null,"url":null,"abstract":"In this work we discuss how useful Kalman Temporal Difference (KTD) is for the purpose of improvement of multiple model learning. By KTD we mean a learning framework by combining Kalman Filters and Temporal Difference (TD) to enhance multi-agent environment. In this approach, we have to attack dependency issues against initialization parameters: the results (quality and efficiency) heavily depend on the parameters. In this investigation, we propose a new approach by estimating multiple models in parallel and by selecting suitable ones eventually.","PeriodicalId":156843,"journal":{"name":"2017 IEEE 3rd International Conference on Collaboration and Internet Computing (CIC)","volume":"121 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 IEEE 3rd International Conference on Collaboration and Internet Computing (CIC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CIC.2017.00017","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 7

Abstract

In this work we discuss how useful Kalman Temporal Difference (KTD) is for the purpose of improvement of multiple model learning. By KTD we mean a learning framework by combining Kalman Filters and Temporal Difference (TD) to enhance multi-agent environment. In this approach, we have to attack dependency issues against initialization parameters: the results (quality and efficiency) heavily depend on the parameters. In this investigation, we propose a new approach by estimating multiple models in parallel and by selecting suitable ones eventually.
基于卡尔曼时间差异学习的模型选择
在这项工作中,我们讨论了卡尔曼时间差分(KTD)在改进多模型学习方面的作用。我们所说的KTD是指一个结合卡尔曼滤波和时间差分(TD)来增强多智能体环境的学习框架。在这种方法中,我们必须解决初始化参数的依赖性问题:结果(质量和效率)严重依赖于参数。在这项研究中,我们提出了一种新的方法,即并行估计多个模型并最终选择合适的模型。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信