Multi-sensor data fusion architecture based on adaptive Kalman filters and fuzzy logic performance assessment

P. J. Escamilla-Ambrosio, N. Mort
{"title":"Multi-sensor data fusion architecture based on adaptive Kalman filters and fuzzy logic performance assessment","authors":"P. J. Escamilla-Ambrosio, N. Mort","doi":"10.1109/ICIF.2002.1021000","DOIUrl":null,"url":null,"abstract":"In this work a novel multi-sensor data fusion (MSDF) architecture is presented. First, each measurement-vector coming from each sensor is fed to a fuzzy logic-based adaptive Kalman filter (FL-AKF); thus there are N sensors and N FL-AKFs working in parallel. The adaptation in each FL-AKF is, in the sense of dynamically tuning the measurement noise covariance matrix R, employing a fuzzy inference system (FIS) based on a covariance matching technique. A second FIS, called a fuzzy logic assessor (FLA), monitors and assesses the performance of each FL-AKF. The FLA assigns a degree of confidence, a number on the interval [0, 1], to each of the FL-AKF outputs. Finally, a defuzzification scheme obtains the fused state-vector estimate based on confidence values. The effectiveness and accuracy of this approach is demonstrated using a simulated example. Two defuzzification methods are explored and compared, and results show good performance of the proposed approach.","PeriodicalId":399150,"journal":{"name":"Proceedings of the Fifth International Conference on Information Fusion. FUSION 2002. (IEEE Cat.No.02EX5997)","volume":"29 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2002-07-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"57","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the Fifth International Conference on Information Fusion. FUSION 2002. (IEEE Cat.No.02EX5997)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICIF.2002.1021000","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 57

Abstract

In this work a novel multi-sensor data fusion (MSDF) architecture is presented. First, each measurement-vector coming from each sensor is fed to a fuzzy logic-based adaptive Kalman filter (FL-AKF); thus there are N sensors and N FL-AKFs working in parallel. The adaptation in each FL-AKF is, in the sense of dynamically tuning the measurement noise covariance matrix R, employing a fuzzy inference system (FIS) based on a covariance matching technique. A second FIS, called a fuzzy logic assessor (FLA), monitors and assesses the performance of each FL-AKF. The FLA assigns a degree of confidence, a number on the interval [0, 1], to each of the FL-AKF outputs. Finally, a defuzzification scheme obtains the fused state-vector estimate based on confidence values. The effectiveness and accuracy of this approach is demonstrated using a simulated example. Two defuzzification methods are explored and compared, and results show good performance of the proposed approach.
基于自适应卡尔曼滤波和模糊逻辑性能评价的多传感器数据融合体系结构
本文提出了一种新的多传感器数据融合(MSDF)体系结构。首先,将来自每个传感器的每个测量向量送入基于模糊逻辑的自适应卡尔曼滤波器(FL-AKF);因此有N个传感器和N个fl - akf并行工作。每个FL-AKF的自适应在动态调整测量噪声协方差矩阵R的意义上,采用基于协方差匹配技术的模糊推理系统(FIS)。第二个FIS,称为模糊逻辑评估器(FLA),监测和评估每个FL-AKF的性能。FLA为每个FL-AKF输出分配一个置信度,即区间[0,1]上的一个数字。最后,提出一种基于置信度的解模糊方案,得到融合状态向量估计。通过仿真算例验证了该方法的有效性和准确性。对两种去模糊化方法进行了探索和比较,结果表明该方法具有良好的性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信