Fooling Intersections of Low-Weight Halfspaces

R. Servedio, Li-Yang Tan
{"title":"Fooling Intersections of Low-Weight Halfspaces","authors":"R. Servedio, Li-Yang Tan","doi":"10.1109/FOCS.2017.81","DOIUrl":null,"url":null,"abstract":"A weight-t halfspace} is a Boolean function f(x)=\\sign(w_1 x_1 + … + w_n x_n - θ) where each w_i is an integer in \\{-t,\\dots,t\\}. We give an explicit pseudorandom generator that δ-fools any intersection of k weight-t halfspaces with seed length \\poly(\\log n, \\log k,t,1/δ). In particular, our result gives an explicit PRG that fools any intersection of any quasi\\poly(n) number of halfspaces of any \\polylog(n) weight to any 1/\\polylog(n) accuracy using seed length \\polylog(n). Prior to this work no explicit PRG with non-trivial seed length was known even for fooling intersections of n weight-1 halfspaces to constant accuracy.The analysis of our PRG fuses techniques from two different lines of work on unconditional pseudorandomness for different kinds of Boolean functions. We extend the approach of Harsha, Klivans and Meka \\cite{HKM12} for fooling intersections of regular halfspaces, and combine this approach with results of Bazzi \\cite{Bazzi:07} and Razborov \\cite{Razborov:09} on bounded independence fooling CNF formulas. Our analysis introduces new coupling-based ingredients into the standard Lindeberg method for establishing quantitative central limit theorems and associated pseudorandomness results.","PeriodicalId":311592,"journal":{"name":"2017 IEEE 58th Annual Symposium on Foundations of Computer Science (FOCS)","volume":"5 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-04-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"8","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 IEEE 58th Annual Symposium on Foundations of Computer Science (FOCS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/FOCS.2017.81","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 8

Abstract

A weight-t halfspace} is a Boolean function f(x)=\sign(w_1 x_1 + … + w_n x_n - θ) where each w_i is an integer in \{-t,\dots,t\}. We give an explicit pseudorandom generator that δ-fools any intersection of k weight-t halfspaces with seed length \poly(\log n, \log k,t,1/δ). In particular, our result gives an explicit PRG that fools any intersection of any quasi\poly(n) number of halfspaces of any \polylog(n) weight to any 1/\polylog(n) accuracy using seed length \polylog(n). Prior to this work no explicit PRG with non-trivial seed length was known even for fooling intersections of n weight-1 halfspaces to constant accuracy.The analysis of our PRG fuses techniques from two different lines of work on unconditional pseudorandomness for different kinds of Boolean functions. We extend the approach of Harsha, Klivans and Meka \cite{HKM12} for fooling intersections of regular halfspaces, and combine this approach with results of Bazzi \cite{Bazzi:07} and Razborov \cite{Razborov:09} on bounded independence fooling CNF formulas. Our analysis introduces new coupling-based ingredients into the standard Lindeberg method for establishing quantitative central limit theorems and associated pseudorandomness results.
愚弄低重量半空间的交叉点
权重半空间}是布尔函数f(x)= \sign (w_1 x_1 + …+ w_n x_n - θ),其中每个w_i都是{-t, \dots,t}中的整数。我们给出了一个显式的伪随机生成器δ-欺骗具有种子长度\poly (\log n, \log k,t,1/δ)的k权重半空间的任何交集。特别是,我们的结果给出了一个显式PRG,该PRG使用种子长度\polylog (n)将任意\polylog (n)权的任意准\poly (n)个数的半空间的任何交集愚弄到任意1/ \polylog (n)精度。在此工作之前,没有已知具有非平凡种子长度的显式PRG,即使将n权重为1的半空间的交集愚弄到恒定精度。对我们的PRG的分析融合了两种不同的关于不同类型布尔函数的无条件伪随机性的技术。我们扩展了Harsha, Klivans和Meka \cite{HKM12}用于欺骗正则半空间相交的方法,并将该方法与Bazzi \cite{Bazzi:07}和Razborov \cite{Razborov:09}关于有界独立欺骗CNF公式的结果结合起来。我们的分析在建立定量中心极限定理和相关伪随机结果的标准Lindeberg方法中引入了新的基于耦合的成分。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信