Properties of point estimators

M. Edge
{"title":"Properties of point estimators","authors":"M. Edge","doi":"10.1093/oso/9780198827627.003.0008","DOIUrl":null,"url":null,"abstract":"Point estimation is the attempt to identify a value associated with some underlying process or population using data. The unknown number that is the target of estimation is called an estimand. An estimator is a function that takes in data and produces an estimate. In this chapter, estimators are evaluated according to a number of criteria. An unbiased estimator is one whose expected value is equal to the estimand—in lay terms, it is accurate. Low-variance estimators, which are precise, are also evaluated. Consistent estimators converge to the estimand as the number of data collected approaches infinity. Mean squared error is the expected squared difference between the estimator and the estimand. Efficient estimators are those that converge to the estimand relatively quickly—i.e., fewer data are necessary to get close to the right answer. An optional section discusses statistical decision theory, which is a general framework for evaluating estimators. Finally, some ideas of robustness are discussed. A robust estimator is one that can still provide useful information even if the model is not quite right or the data are contaminated.","PeriodicalId":192186,"journal":{"name":"Statistical Thinking from Scratch","volume":"39 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-06-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Statistical Thinking from Scratch","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1093/oso/9780198827627.003.0008","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Point estimation is the attempt to identify a value associated with some underlying process or population using data. The unknown number that is the target of estimation is called an estimand. An estimator is a function that takes in data and produces an estimate. In this chapter, estimators are evaluated according to a number of criteria. An unbiased estimator is one whose expected value is equal to the estimand—in lay terms, it is accurate. Low-variance estimators, which are precise, are also evaluated. Consistent estimators converge to the estimand as the number of data collected approaches infinity. Mean squared error is the expected squared difference between the estimator and the estimand. Efficient estimators are those that converge to the estimand relatively quickly—i.e., fewer data are necessary to get close to the right answer. An optional section discusses statistical decision theory, which is a general framework for evaluating estimators. Finally, some ideas of robustness are discussed. A robust estimator is one that can still provide useful information even if the model is not quite right or the data are contaminated.
点估计量的性质
点估计是尝试使用数据识别与某些底层流程或群体相关的值。作为估计目标的未知数称为估计量。估计器是一个接收数据并产生估计的函数。在本章中,估计器是根据一些标准来评估的。无偏估计量是指其期望值与估计量相等的估计量——用术语来说,它是准确的。还对精确的低方差估计器进行了评估。当所收集的数据数量趋于无穷时,一致估计收敛于估计。均方误差是估计量和估计量之间的期望平方差。有效的估计量是那些相对较快地收敛于估计量的估计量。,需要更少的数据来接近正确答案。一个可选的部分讨论统计决策理论,它是评估估计器的一般框架。最后,讨论了鲁棒性的一些思想。鲁棒估计器是指即使模型不完全正确或数据受到污染,仍能提供有用信息的估计器。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信