Neural Metaphor Detecting with CNN-LSTM Model

Chuhan Wu, Fangzhao Wu, Yubo Chen, Sixing Wu, Zhigang Yuan, Yongfeng Huang
{"title":"Neural Metaphor Detecting with CNN-LSTM Model","authors":"Chuhan Wu, Fangzhao Wu, Yubo Chen, Sixing Wu, Zhigang Yuan, Yongfeng Huang","doi":"10.18653/v1/W18-0913","DOIUrl":null,"url":null,"abstract":"Metaphors are figurative languages widely used in daily life and literatures. It’s an important task to detect the metaphors evoked by texts. Thus, the metaphor shared task is aimed to extract metaphors from plain texts at word level. We propose to use a CNN-LSTM model for this task. Our model combines CNN and LSTM layers to utilize both local and long-range contextual information for identifying metaphorical information. In addition, we compare the performance of the softmax classifier and conditional random field (CRF) for sequential labeling in this task. We also incorporated some additional features such as part of speech (POS) tags and word cluster to improve the performance of model. Our best model achieved 65.06% F-score in the all POS testing subtask and 67.15% in the verbs testing subtask.","PeriodicalId":190853,"journal":{"name":"Fig-Lang@NAACL-HLT","volume":"6 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"73","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Fig-Lang@NAACL-HLT","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.18653/v1/W18-0913","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 73

Abstract

Metaphors are figurative languages widely used in daily life and literatures. It’s an important task to detect the metaphors evoked by texts. Thus, the metaphor shared task is aimed to extract metaphors from plain texts at word level. We propose to use a CNN-LSTM model for this task. Our model combines CNN and LSTM layers to utilize both local and long-range contextual information for identifying metaphorical information. In addition, we compare the performance of the softmax classifier and conditional random field (CRF) for sequential labeling in this task. We also incorporated some additional features such as part of speech (POS) tags and word cluster to improve the performance of model. Our best model achieved 65.06% F-score in the all POS testing subtask and 67.15% in the verbs testing subtask.
CNN-LSTM模型的神经隐喻检测
隐喻是日常生活和文学中广泛使用的比喻性语言。文本隐喻的检测是一项重要的任务。因此,隐喻共享任务的目的是在词的层面上从普通文本中提取隐喻。我们建议使用CNN-LSTM模型来完成这项任务。我们的模型结合了CNN和LSTM层,利用本地和远程上下文信息来识别隐喻信息。此外,在本任务中,我们比较了softmax分类器和条件随机场(CRF)用于顺序标记的性能。为了提高模型的性能,我们还加入了词性标记和词簇等附加特性。我们的最佳模型在所有词性测试子任务中获得65.06%的f分,在动词测试子任务中获得67.15%的f分。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信