Performance evaluation of swarm intelligence on model-based PID tuning

D. A. R. Wati
{"title":"Performance evaluation of swarm intelligence on model-based PID tuning","authors":"D. A. R. Wati","doi":"10.1109/CYBERNETICSCOM.2013.6865778","DOIUrl":null,"url":null,"abstract":"PID controller has been implemented in many applications due to its simplicity and its good performance. The main problem in PID controller design is tuning its parameters. In order to result in optimal performance, PID parameters should be tuned precisely. An alternative approach that can be used in PID parameters tuning is using swarm intelligence including Particle Swarm Optimization (PSO) and Artificial Bee Colony Optimization (ABCO). This paper presents the performance evaluation of both techniques on PID controller tuning. The tuning is done offline based on a model of plant. The objective function is minimizing the mean square error of step response. Both techniques result in the same optimal solution and produce better response characteristics compared to conventional PID tuning by Ziegler-Nichols method and manual tuning.","PeriodicalId":351051,"journal":{"name":"2013 IEEE International Conference on Computational Intelligence and Cybernetics (CYBERNETICSCOM)","volume":"147 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2013-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"8","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2013 IEEE International Conference on Computational Intelligence and Cybernetics (CYBERNETICSCOM)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CYBERNETICSCOM.2013.6865778","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 8

Abstract

PID controller has been implemented in many applications due to its simplicity and its good performance. The main problem in PID controller design is tuning its parameters. In order to result in optimal performance, PID parameters should be tuned precisely. An alternative approach that can be used in PID parameters tuning is using swarm intelligence including Particle Swarm Optimization (PSO) and Artificial Bee Colony Optimization (ABCO). This paper presents the performance evaluation of both techniques on PID controller tuning. The tuning is done offline based on a model of plant. The objective function is minimizing the mean square error of step response. Both techniques result in the same optimal solution and produce better response characteristics compared to conventional PID tuning by Ziegler-Nichols method and manual tuning.
群智能在基于模型的PID整定中的性能评价
PID控制器具有简单、性能好等优点,在许多应用中得到了实现。PID控制器设计的主要问题是参数整定。为了获得最佳性能,需要对PID参数进行精确调优。另一种可用于PID参数整定的方法是使用群体智能,包括粒子群优化(PSO)和人工蜂群优化(ABCO)。本文给出了两种方法在PID控制器整定中的性能评价。调优是基于植物模型离线完成的。目标函数是使阶跃响应的均方误差最小。与Ziegler-Nichols方法和手动调谐的传统PID调谐相比,这两种技术都能产生相同的最优解,并产生更好的响应特性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信