An Ontology-Based Approach for Mining Radicalization Indicators from Online Messages

Abir Masmoudi, M. Barhamgi, Noura Faci, Z. Saoud, Khalid Belhajjame, D. Benslimane, David Camacho
{"title":"An Ontology-Based Approach for Mining Radicalization Indicators from Online Messages","authors":"Abir Masmoudi, M. Barhamgi, Noura Faci, Z. Saoud, Khalid Belhajjame, D. Benslimane, David Camacho","doi":"10.1109/AINA.2018.00094","DOIUrl":null,"url":null,"abstract":"Detecting radicalization on social networks is crucial to the fight against violent extremism and terrorism. In most cases, online radicalization has clear warning indicators that can be detected at the early stages of the radicalization process. In this paper, we focus on mining radicalization indicators from online messages by exploiting structured domain knowledge. More precisely, we propose an approach to automatically annotate social messages with concepts from a domain ontology. Annotations are then exploited within an inference phase to identify the messages exhibiting a radicalization indicator. We conducted a set of experiments on a sample extracted from a public dataset that contains radicalized individuals along with their social messages (i.e. Tweets). Obtained results show the effectiveness of our approach compared to a baseline method.","PeriodicalId":239730,"journal":{"name":"2018 IEEE 32nd International Conference on Advanced Information Networking and Applications (AINA)","volume":"23 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-05-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 IEEE 32nd International Conference on Advanced Information Networking and Applications (AINA)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/AINA.2018.00094","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 7

Abstract

Detecting radicalization on social networks is crucial to the fight against violent extremism and terrorism. In most cases, online radicalization has clear warning indicators that can be detected at the early stages of the radicalization process. In this paper, we focus on mining radicalization indicators from online messages by exploiting structured domain knowledge. More precisely, we propose an approach to automatically annotate social messages with concepts from a domain ontology. Annotations are then exploited within an inference phase to identify the messages exhibiting a radicalization indicator. We conducted a set of experiments on a sample extracted from a public dataset that contains radicalized individuals along with their social messages (i.e. Tweets). Obtained results show the effectiveness of our approach compared to a baseline method.
基于本体的在线消息激进化指标挖掘方法
在社交网络上发现激进主义对于打击暴力极端主义和恐怖主义至关重要。在大多数情况下,在线激进化有明确的预警指标,可以在激进化过程的早期阶段检测到。在本文中,我们着重于利用结构化领域知识从在线消息中挖掘激进化指标。更准确地说,我们提出了一种用领域本体的概念自动注释社交消息的方法。然后在推理阶段利用注释来识别显示激进指示符的消息。我们从一个包含激进个人及其社交信息(即推文)的公共数据集中提取了一个样本,并对其进行了一系列实验。得到的结果表明,与基线方法相比,我们的方法是有效的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信