Green web services: Improving energy efficiency in data centers via workload predictions

M. Menarini, Filippo Seracini, Xiang Zhang, T. Simunic, Ingolf Krüger
{"title":"Green web services: Improving energy efficiency in data centers via workload predictions","authors":"M. Menarini, Filippo Seracini, Xiang Zhang, T. Simunic, Ingolf Krüger","doi":"10.1109/GREENS.2013.6606416","DOIUrl":null,"url":null,"abstract":"Improving energy efficiency of data centers is an important research challenge. Web services are an important part of data centers' workload, and a large contributor to their energy footprint. This paper contributes an approach that, leveraging statistical data over web services usage patterns, dynamically predicts the resources required by the web service application. Our framework, SOPRA, uses these predictions to constantly adapt the allocation of resources to minimize the energy utilization of the data center. We demonstrate the viability of our approach by executing SOPRA over a synthetic workload. We compare the energy savings achieved by SOPRA with the traditional over allocation strategy and with the saving achievable by using a static predictor. Furthermore, we show how different service level agreements (SLA) influence the ability to save energy. The results of our experiments show that, with our workload, we can save up to 52.49% of energy over the over-allocation approach while a static prediction can only achieve a 44.78% saving. Moreover, our results show that the SLA has a high impact on energy savings. Using a more demanding SLA, the energy saving SOPRA was able to achieve was only 28.29%.","PeriodicalId":205991,"journal":{"name":"2013 2nd International Workshop on Green and Sustainable Software (GREENS)","volume":"2013 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2013-05-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"11","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2013 2nd International Workshop on Green and Sustainable Software (GREENS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/GREENS.2013.6606416","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 11

Abstract

Improving energy efficiency of data centers is an important research challenge. Web services are an important part of data centers' workload, and a large contributor to their energy footprint. This paper contributes an approach that, leveraging statistical data over web services usage patterns, dynamically predicts the resources required by the web service application. Our framework, SOPRA, uses these predictions to constantly adapt the allocation of resources to minimize the energy utilization of the data center. We demonstrate the viability of our approach by executing SOPRA over a synthetic workload. We compare the energy savings achieved by SOPRA with the traditional over allocation strategy and with the saving achievable by using a static predictor. Furthermore, we show how different service level agreements (SLA) influence the ability to save energy. The results of our experiments show that, with our workload, we can save up to 52.49% of energy over the over-allocation approach while a static prediction can only achieve a 44.78% saving. Moreover, our results show that the SLA has a high impact on energy savings. Using a more demanding SLA, the energy saving SOPRA was able to achieve was only 28.29%.
绿色web服务:通过工作量预测提高数据中心的能源效率
提高数据中心的能源效率是一个重要的研究挑战。Web服务是数据中心工作负载的重要组成部分,也是其能源足迹的主要贡献者。本文提供了一种方法,利用web服务使用模式上的统计数据,动态地预测web服务应用程序所需的资源。我们的框架SOPRA使用这些预测不断调整资源分配,以最大限度地减少数据中心的能源利用。我们通过在合成工作负载上执行SOPRA来证明我们方法的可行性。我们将SOPRA实现的节能与传统的过度分配策略以及使用静态预测器实现的节能进行了比较。此外,我们还展示了不同的服务水平协议(SLA)如何影响节能能力。我们的实验结果表明,在我们的工作量下,我们可以比过度分配方法节省高达52.49%的能量,而静态预测只能节省44.78%的能量。此外,我们的研究结果表明,SLA对节能有很高的影响。使用更苛刻的SLA, SOPRA能够实现的节能仅为28.29%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信