A generative-discriminative learning model for noisy information fusion

Thomas Hecht, A. Gepperth
{"title":"A generative-discriminative learning model for noisy information fusion","authors":"Thomas Hecht, A. Gepperth","doi":"10.1109/DEVLRN.2015.7346148","DOIUrl":null,"url":null,"abstract":"This article is concerned with the acquisition of mul-timodal integration capacities by learning algorithms. Humans seem to perform statistically optimal fusion, and this ability may be gradually learned from experience. In order to stress the advantage of learning approaches in contrast to hand-coded models, we propose a generative-discriminative learning architecture that avoids simplifying assumptions on prior distributions and copes with realistic relationships between observations and underlying values. We base our investigation on a simple self-organized approach, for which we show statistical near-optimality properties by explicit comparison to an equivalent Bayesian model on a realistic artificial dataset.","PeriodicalId":164756,"journal":{"name":"2015 Joint IEEE International Conference on Development and Learning and Epigenetic Robotics (ICDL-EpiRob)","volume":"22 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2015-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2015 Joint IEEE International Conference on Development and Learning and Epigenetic Robotics (ICDL-EpiRob)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/DEVLRN.2015.7346148","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

Abstract

This article is concerned with the acquisition of mul-timodal integration capacities by learning algorithms. Humans seem to perform statistically optimal fusion, and this ability may be gradually learned from experience. In order to stress the advantage of learning approaches in contrast to hand-coded models, we propose a generative-discriminative learning architecture that avoids simplifying assumptions on prior distributions and copes with realistic relationships between observations and underlying values. We base our investigation on a simple self-organized approach, for which we show statistical near-optimality properties by explicit comparison to an equivalent Bayesian model on a realistic artificial dataset.
噪声信息融合的生成-判别学习模型
本文研究了通过学习算法获取多模态集成能力的方法。从统计数据来看,人类的融合能力似乎是最优的,这种能力可能是逐渐从经验中习得的。为了强调学习方法相对于手工编码模型的优势,我们提出了一种生成-判别学习架构,避免简化对先验分布的假设,并处理观察值与潜在值之间的现实关系。我们的研究基于一种简单的自组织方法,通过与现实人工数据集上的等效贝叶斯模型进行显式比较,我们展示了统计近最优性特性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信