SOME RESULTS ON SOLVABILITY OF ORDINARY LINEAR DIFFERENTIAL EQUATIONS IN LOCALLY CONVEX SPACES

S. Shkarin
{"title":"SOME RESULTS ON SOLVABILITY OF ORDINARY LINEAR DIFFERENTIAL EQUATIONS IN LOCALLY CONVEX SPACES","authors":"S. Shkarin","doi":"10.1070/SM1992v071n01ABEH002126","DOIUrl":null,"url":null,"abstract":"Let be the class of sequentially complete locally convex spaces such that an existence theorem holds for the linear Cauchy problem , , with respect to functions . It is proved that if , then for an arbitrary set . It is also proved that a topological product of infinitely many infinite-dimensional Frechet spaces, each not isomorphic to , does not belong to .","PeriodicalId":208776,"journal":{"name":"Mathematics of The Ussr-sbornik","volume":"45-46 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1992-02-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"16","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Mathematics of The Ussr-sbornik","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1070/SM1992v071n01ABEH002126","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 16

Abstract

Let be the class of sequentially complete locally convex spaces such that an existence theorem holds for the linear Cauchy problem , , with respect to functions . It is proved that if , then for an arbitrary set . It is also proved that a topological product of infinitely many infinite-dimensional Frechet spaces, each not isomorphic to , does not belong to .
局部凸空间中常线性微分方程可解性的一些结果
设序列完备局部凸空间的一类,使得关于函数的线性柯西问题的存在性定理成立。证明了如果,则对于任意集合。证明了无限多个不同构于的无限维Frechet空间的拓扑积不属于。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信