Clustering Algorithms and RFM Analysis Performed on Retail Transactions

Yash Parikh, Eman Abdelfattah
{"title":"Clustering Algorithms and RFM Analysis Performed on Retail Transactions","authors":"Yash Parikh, Eman Abdelfattah","doi":"10.1109/UEMCON51285.2020.9298123","DOIUrl":null,"url":null,"abstract":"This paper investigates how clustering algorithms and Recency, Frequency, and Monetary value (RFM) analysis can be performed on online transactions to provide strategies for customer purchasing behaviors. Along with performing RFM analysis on the retail dataset, clustering algorithms such as Mean-shift, Density-Based Spatial Clustering of Applications with Noise (DBSCAN), Agglomerative Clustering, and K-Means were utilized. By comparing these clustering algorithms, we have found valuable customer groups based on RFM values.","PeriodicalId":433609,"journal":{"name":"2020 11th IEEE Annual Ubiquitous Computing, Electronics & Mobile Communication Conference (UEMCON)","volume":"45 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-10-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"9","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 11th IEEE Annual Ubiquitous Computing, Electronics & Mobile Communication Conference (UEMCON)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/UEMCON51285.2020.9298123","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 9

Abstract

This paper investigates how clustering algorithms and Recency, Frequency, and Monetary value (RFM) analysis can be performed on online transactions to provide strategies for customer purchasing behaviors. Along with performing RFM analysis on the retail dataset, clustering algorithms such as Mean-shift, Density-Based Spatial Clustering of Applications with Noise (DBSCAN), Agglomerative Clustering, and K-Means were utilized. By comparing these clustering algorithms, we have found valuable customer groups based on RFM values.
零售交易的聚类算法和RFM分析
本文研究了如何在在线交易中执行聚类算法和最近,频率和货币价值(RFM)分析,以提供客户购买行为的策略。除了对零售数据集进行RFM分析外,还使用了Mean-shift、基于密度的空间噪声应用聚类(DBSCAN)、聚集聚类和K-Means等聚类算法。通过比较这些聚类算法,我们找到了基于RFM值的有价值的客户群。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信