Double overrelaxation thresholding methods for sparse signal reconstruction

Kun Qiu, Aleksandar Dogandzic
{"title":"Double overrelaxation thresholding methods for sparse signal reconstruction","authors":"Kun Qiu, Aleksandar Dogandzic","doi":"10.1109/CISS.2010.5464879","DOIUrl":null,"url":null,"abstract":"We propose double overrelaxation (DORE) and automatic double overrelaxation (ADORE) thresholding methods for sparse signal reconstruction. The measurements follow an underdetermined linear model, where the regression-coefficient vector is a sum of an unknown deterministic sparse signal component and a zero-mean white Gaussian component with an unknown variance. We first introduce an expectation-conditional maximization either (ECME) algorithm for estimating the sparse signal and variance of the random signal component and then describe our DORE thresholding scheme. The DORE scheme interleaves two successive overrelaxation steps and ECME steps, with goal to accelerate the convergence of the ECME algorithm. Both ECME and DORE algorithms aim at finding the maximum likelihood (ML) estimates of the unknown parameters assuming that the signal sparsity level is known. If the signal sparsity level is unknown, we propose an unconstrained sparsity selection (USS) criterion and show that, under certain conditions, maximizing the USS objective function with respect to the signal sparsity level is equivalent to finding the sparsest solution of the underlying underdetermined linear system. Our ADORE scheme demands no prior knowledge about the signal sparsity level and estimates this level by applying a golden-section search to maximize the USS objective function. We employ the proposed methods to reconstruct images from sparse tomographic projections and compare them with existing approaches that are feasible for large-scale data. Our numerical examples show that DORE is significantly faster than the ECME and related iterative hard thresholding (IHT) algorithms.","PeriodicalId":118872,"journal":{"name":"2010 44th Annual Conference on Information Sciences and Systems (CISS)","volume":"2011 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2010-03-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"20","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2010 44th Annual Conference on Information Sciences and Systems (CISS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CISS.2010.5464879","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 20

Abstract

We propose double overrelaxation (DORE) and automatic double overrelaxation (ADORE) thresholding methods for sparse signal reconstruction. The measurements follow an underdetermined linear model, where the regression-coefficient vector is a sum of an unknown deterministic sparse signal component and a zero-mean white Gaussian component with an unknown variance. We first introduce an expectation-conditional maximization either (ECME) algorithm for estimating the sparse signal and variance of the random signal component and then describe our DORE thresholding scheme. The DORE scheme interleaves two successive overrelaxation steps and ECME steps, with goal to accelerate the convergence of the ECME algorithm. Both ECME and DORE algorithms aim at finding the maximum likelihood (ML) estimates of the unknown parameters assuming that the signal sparsity level is known. If the signal sparsity level is unknown, we propose an unconstrained sparsity selection (USS) criterion and show that, under certain conditions, maximizing the USS objective function with respect to the signal sparsity level is equivalent to finding the sparsest solution of the underlying underdetermined linear system. Our ADORE scheme demands no prior knowledge about the signal sparsity level and estimates this level by applying a golden-section search to maximize the USS objective function. We employ the proposed methods to reconstruct images from sparse tomographic projections and compare them with existing approaches that are feasible for large-scale data. Our numerical examples show that DORE is significantly faster than the ECME and related iterative hard thresholding (IHT) algorithms.
稀疏信号重构的双过松弛阈值法
提出了双过松弛(DORE)和自动双过松弛(ADORE)阈值法用于稀疏信号重构。测量遵循欠确定线性模型,其中回归系数向量是未知确定性稀疏信号分量和具有未知方差的零均值高斯白分量的和。我们首先介绍了一种用于估计稀疏信号和随机信号分量方差的期望条件最大化(ECME)算法,然后描述了我们的DORE阈值方案。DORE方案将两个连续的过松弛步骤与ECME步骤交织在一起,目的是加快ECME算法的收敛速度。ECME和DORE算法都旨在寻找未知参数的最大似然(ML)估计,假设信号稀疏度水平是已知的。如果信号稀疏度水平未知,我们提出了一个无约束稀疏度选择(USS)准则,并表明,在某些条件下,最大化USS目标函数相对于信号稀疏度水平相当于找到底层欠确定线性系统的最稀疏解。我们的ADORE方案不需要关于信号稀疏度水平的先验知识,并通过应用黄金分割搜索来最大化USS目标函数来估计该水平。我们采用所提出的方法从稀疏层析投影中重建图像,并将其与现有的适用于大规模数据的方法进行比较。我们的数值算例表明,DORE比ECME和相关的迭代硬阈值(IHT)算法要快得多。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信