Pi-Calculus in Logical Form

M. Bonsangue, A. Kurz
{"title":"Pi-Calculus in Logical Form","authors":"M. Bonsangue, A. Kurz","doi":"10.1109/LICS.2007.36","DOIUrl":null,"url":null,"abstract":"Abramsky's logical formulation of domain theory is extended to encompass the domain theoretic model for pi-calculus processes of Stark and of Fiore, Moggi and Sangiorgi. This is done by defining a logical counterpart of categorical constructions including dynamic name allocation and name exponentiation, and showing that they are dual to standard constructs in functor categories. We show that initial algebras of functors defined in terms of these constructs give rise to a logic that is sound, complete, and characterises bisimilarity. The approach is modular, and we apply it to derive a logical formulation of pi-calculus. The resulting logic is a modal calculus with primitives for input, free output and bound output.","PeriodicalId":137827,"journal":{"name":"22nd Annual IEEE Symposium on Logic in Computer Science (LICS 2007)","volume":"8 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2007-07-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"27","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"22nd Annual IEEE Symposium on Logic in Computer Science (LICS 2007)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/LICS.2007.36","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 27

Abstract

Abramsky's logical formulation of domain theory is extended to encompass the domain theoretic model for pi-calculus processes of Stark and of Fiore, Moggi and Sangiorgi. This is done by defining a logical counterpart of categorical constructions including dynamic name allocation and name exponentiation, and showing that they are dual to standard constructs in functor categories. We show that initial algebras of functors defined in terms of these constructs give rise to a logic that is sound, complete, and characterises bisimilarity. The approach is modular, and we apply it to derive a logical formulation of pi-calculus. The resulting logic is a modal calculus with primitives for input, free output and bound output.
逻辑形式的pi微积分
Abramsky的领域理论的逻辑表述被扩展到包括Stark和Fiore、Moggi和Sangiorgi的pi-微积分过程的领域理论模型。这是通过定义包括动态名称分配和名称幂运算在内的分类构造的逻辑对应物来实现的,并表明它们与函子类别中的标准构造是对偶的。我们表明,根据这些构造定义的函子的初始代数产生了一个健全的、完整的、具有双相似性特征的逻辑。该方法是模块化的,我们将其应用于推导pi-微积分的逻辑公式。得到的逻辑是一个模态演算,包含输入、自由输出和有界输出的原语。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信