Benchmarking heuristic search and optimisation algorithms in Matlab

Wuqiao Luo, Yun Li
{"title":"Benchmarking heuristic search and optimisation algorithms in Matlab","authors":"Wuqiao Luo, Yun Li","doi":"10.1109/IConAC.2016.7604927","DOIUrl":null,"url":null,"abstract":"With the proliferating development of heuristic methods, it has become challenging to choose the most suitable ones for an application at hand. This paper evaluates the performance of these algorithms available in Matlab, as it is problem dependent and parameter sensitive. Further, the paper attempts to address the challenge that there exists no satisfied benchmarks to evaluation all the algorithms at the same standard. The paper tests five heuristic algorithms in Matlab, the Nelder-Mead simplex search, the Genetic Algorithm, the Genetic Algorithm with elitism, Simulated Annealing and Particle Swarm Optimization, with four widely adopted benchmark problems. The Genetic Algorithm has an overall best performance at optimality and accuracy, while PSO has fast convergence speed when facing unimodal problem.","PeriodicalId":375052,"journal":{"name":"2016 22nd International Conference on Automation and Computing (ICAC)","volume":"4 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"10","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2016 22nd International Conference on Automation and Computing (ICAC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IConAC.2016.7604927","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 10

Abstract

With the proliferating development of heuristic methods, it has become challenging to choose the most suitable ones for an application at hand. This paper evaluates the performance of these algorithms available in Matlab, as it is problem dependent and parameter sensitive. Further, the paper attempts to address the challenge that there exists no satisfied benchmarks to evaluation all the algorithms at the same standard. The paper tests five heuristic algorithms in Matlab, the Nelder-Mead simplex search, the Genetic Algorithm, the Genetic Algorithm with elitism, Simulated Annealing and Particle Swarm Optimization, with four widely adopted benchmark problems. The Genetic Algorithm has an overall best performance at optimality and accuracy, while PSO has fast convergence speed when facing unimodal problem.
在Matlab中对标启发式搜索和优化算法
随着启发式方法的迅速发展,如何为手头的应用选择最合适的启发式方法已成为一项挑战。本文在Matlab中对这些算法的性能进行了评价,因为它们具有问题依赖性和参数敏感性。此外,本文试图解决没有满意的基准来评估所有算法在同一标准下的挑战。本文在Matlab中测试了五种启发式算法,即Nelder-Mead单纯形搜索、遗传算法、精英遗传算法、模拟退火算法和粒子群算法,以及四种被广泛采用的基准问题。遗传算法在最优性和精度方面具有较好的综合性能,而粒子群算法在单峰问题上收敛速度较快。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信