{"title":"Discrete phase space, relativistic quantum electrodynamics, and a non-singular Coulomb potential","authors":"A. Das, R. Chatterjee, Ting Yu","doi":"10.1142/S0217732320501990","DOIUrl":null,"url":null,"abstract":"This paper deals with the relativistic, quantized electromagnetic and Dirac field equations in the arena of discrete phase space and continuous time. The mathematical formulation involves partial difference equations. In the consequent relativistic quantum electrodynamics, the corresponding Feynman diagrams and S#-matrix elements are derived. In the special case of electron-electron scattering (Moller scattering), the explicit second order element is deduced. Moreover, assuming the slow motions for two external electrons, the approximation of yields a divergence-free Coulomb potential.","PeriodicalId":369778,"journal":{"name":"arXiv: General Physics","volume":"29 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-04-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv: General Physics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1142/S0217732320501990","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1
Abstract
This paper deals with the relativistic, quantized electromagnetic and Dirac field equations in the arena of discrete phase space and continuous time. The mathematical formulation involves partial difference equations. In the consequent relativistic quantum electrodynamics, the corresponding Feynman diagrams and S#-matrix elements are derived. In the special case of electron-electron scattering (Moller scattering), the explicit second order element is deduced. Moreover, assuming the slow motions for two external electrons, the approximation of yields a divergence-free Coulomb potential.