{"title":"Approximate solution of fractional differential equations using Shannon wavelet operational matrix method","authors":"J. Iqbal, R. Abass, Puneet Kumar","doi":"10.1504/ijcsm.2021.10039882","DOIUrl":null,"url":null,"abstract":"Many physical problems are frequently governed by fractional differential equations and obtaining the solution of these equations have been the subject of a lot of investigations in recent years. The aim of this paper is to propose a novel and effective method based on Shannon wavelet operational matrices of fractional-order integration. The theory of Shannon wavelets and its properties are first presented. Block Pulse functions and collocation method are employed to derive a general procedure in constructing these operational matrices. The main peculiarity of the proposed technique is that it condenses the given problem into a system of algebraic equations that can be easily solved by MATLAB package. Furthermore, a designed scheme is applied to numerical examples to analyse its applicability, reliability, and effectiveness.","PeriodicalId":399731,"journal":{"name":"Int. J. Comput. Sci. Math.","volume":"210 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-07-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Int. J. Comput. Sci. Math.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1504/ijcsm.2021.10039882","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
Many physical problems are frequently governed by fractional differential equations and obtaining the solution of these equations have been the subject of a lot of investigations in recent years. The aim of this paper is to propose a novel and effective method based on Shannon wavelet operational matrices of fractional-order integration. The theory of Shannon wavelets and its properties are first presented. Block Pulse functions and collocation method are employed to derive a general procedure in constructing these operational matrices. The main peculiarity of the proposed technique is that it condenses the given problem into a system of algebraic equations that can be easily solved by MATLAB package. Furthermore, a designed scheme is applied to numerical examples to analyse its applicability, reliability, and effectiveness.