Investigating linguistic knowledge in a maximum entropy token-based language model

Jia Cui, Yi Su, Keith B. Hall, F. Jelinek
{"title":"Investigating linguistic knowledge in a maximum entropy token-based language model","authors":"Jia Cui, Yi Su, Keith B. Hall, F. Jelinek","doi":"10.1109/ASRU.2007.4430104","DOIUrl":null,"url":null,"abstract":"We present a novel language model capable of incorporating various types of linguistic information as encoded in the form of a token, a (word, label)-tuple. Using tokens as hidden states, our model is effectively a hidden Markov model (HMM) producing sequences of words with trivial output distributions. The transition probabilities, however, are computed using a maximum entropy model to take advantage of potentially overlapping features. We investigated different types of labels with a wide range of linguistic implications. These models outperform Kneser-Ney smoothed n-gram models both in terms of perplexity on standard datasets and in terms of word error rate for a large vocabulary speech recognition system.","PeriodicalId":371729,"journal":{"name":"2007 IEEE Workshop on Automatic Speech Recognition & Understanding (ASRU)","volume":"5 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2007-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"8","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2007 IEEE Workshop on Automatic Speech Recognition & Understanding (ASRU)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ASRU.2007.4430104","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 8

Abstract

We present a novel language model capable of incorporating various types of linguistic information as encoded in the form of a token, a (word, label)-tuple. Using tokens as hidden states, our model is effectively a hidden Markov model (HMM) producing sequences of words with trivial output distributions. The transition probabilities, however, are computed using a maximum entropy model to take advantage of potentially overlapping features. We investigated different types of labels with a wide range of linguistic implications. These models outperform Kneser-Ney smoothed n-gram models both in terms of perplexity on standard datasets and in terms of word error rate for a large vocabulary speech recognition system.
研究基于最大熵符号的语言模型中的语言知识
我们提出了一种新的语言模型,能够将各种类型的语言信息以标记、(词、标签)元组的形式编码。使用标记作为隐藏状态,我们的模型实际上是一个隐马尔可夫模型(HMM),产生具有平凡输出分布的单词序列。然而,转移概率是使用最大熵模型来计算的,以利用潜在的重叠特征。我们研究了具有广泛语言含义的不同类型的标签。这些模型在标准数据集上的困惑度和大词汇量语音识别系统的单词错误率方面都优于Kneser-Ney平滑n-gram模型。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信