No-reference video quality measurement using neural networks

J. Choe, Kwon Lee, Chulhee Lee
{"title":"No-reference video quality measurement using neural networks","authors":"J. Choe, Kwon Lee, Chulhee Lee","doi":"10.1109/ICDSP.2009.5201054","DOIUrl":null,"url":null,"abstract":"Objective video quality measurements emerge as an important issue as multimedia data is increasingly transmitted over the channels where bandwidth may not be guaranteed. Among various objective models for video quality measurement, no-reference models have the largest application areas. In this paper, we propose a no-reference video quality assessment method for H.264 using artificial neural networks. Various features are extracted from H.264 bit-stream data and these features are inputted to a neural network. The neural network is trained to predict subjective video quality scores obtained by a number of evaluators. Experimental results show promising results, though a larger database would be required to train neural networks to provide robust performance.","PeriodicalId":409669,"journal":{"name":"2009 16th International Conference on Digital Signal Processing","volume":"10 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2009-07-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"13","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2009 16th International Conference on Digital Signal Processing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICDSP.2009.5201054","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 13

Abstract

Objective video quality measurements emerge as an important issue as multimedia data is increasingly transmitted over the channels where bandwidth may not be guaranteed. Among various objective models for video quality measurement, no-reference models have the largest application areas. In this paper, we propose a no-reference video quality assessment method for H.264 using artificial neural networks. Various features are extracted from H.264 bit-stream data and these features are inputted to a neural network. The neural network is trained to predict subjective video quality scores obtained by a number of evaluators. Experimental results show promising results, though a larger database would be required to train neural networks to provide robust performance.
使用神经网络的无参考视频质量测量
随着多媒体数据越来越多地通过带宽无法保证的信道传输,客观视频质量测量成为一个重要问题。在视频质量测量的各种客观模型中,无参考模型具有最大的应用领域。本文提出了一种基于人工神经网络的H.264无参考视频质量评估方法。从H.264比特流数据中提取各种特征,并将这些特征输入到神经网络中。神经网络被训练来预测由许多评估者获得的主观视频质量分数。实验结果显示了有希望的结果,尽管需要更大的数据库来训练神经网络以提供强大的性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信