Scalable Programming Workflows for Validation of Quantum Computers

Thien Nguyen, Lindsay Bassman, Dmitry I. Lyakh, Phillip C. Lotshaw, A. McCaskey, R. Bennink, Vicente Leyton-Ortega, R. Pooser, T. Humble, W. D. de Jong
{"title":"Scalable Programming Workflows for Validation of Quantum Computers","authors":"Thien Nguyen, Lindsay Bassman, Dmitry I. Lyakh, Phillip C. Lotshaw, A. McCaskey, R. Bennink, Vicente Leyton-Ortega, R. Pooser, T. Humble, W. D. de Jong","doi":"10.1109/QCS54837.2021.00013","DOIUrl":null,"url":null,"abstract":"Hybrid quantum-classical workflows have become standard methods for executing variational algorithms and other quantum simulation techniques, which are key applications for noisy intermediate scale quantum (NISQ) computers. Validating these simulations is an important task which helps gauge the progress of quantum computer development, and classical simulation can serve as a tool to this end. Both exact and more scalable approximate methods with quantifiable error bounds can be used in validation tasks where the applicable metrics include the distance from a calculable ground truth, the quality of an error model fit to data, etc. Here we present a library extension that includes methods for validation of quantum simulations based on scalable hybrid workflows executable on high performance computers. We provide examples that use approximate methods based on tensor networks and stabilizer simulators to bound the error of quantum simulations on NISQ hardware.","PeriodicalId":432600,"journal":{"name":"2021 IEEE/ACM Second International Workshop on Quantum Computing Software (QCS)","volume":"55 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 IEEE/ACM Second International Workshop on Quantum Computing Software (QCS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/QCS54837.2021.00013","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

Abstract

Hybrid quantum-classical workflows have become standard methods for executing variational algorithms and other quantum simulation techniques, which are key applications for noisy intermediate scale quantum (NISQ) computers. Validating these simulations is an important task which helps gauge the progress of quantum computer development, and classical simulation can serve as a tool to this end. Both exact and more scalable approximate methods with quantifiable error bounds can be used in validation tasks where the applicable metrics include the distance from a calculable ground truth, the quality of an error model fit to data, etc. Here we present a library extension that includes methods for validation of quantum simulations based on scalable hybrid workflows executable on high performance computers. We provide examples that use approximate methods based on tensor networks and stabilizer simulators to bound the error of quantum simulations on NISQ hardware.
量子计算机验证的可扩展编程工作流
混合量子经典工作流已经成为执行变分算法和其他量子模拟技术的标准方法,这些技术是噪声中尺度量子(NISQ)计算机的关键应用。验证这些模拟是一项重要的任务,有助于衡量量子计算机发展的进展,而经典模拟可以作为实现这一目标的工具。具有可量化误差边界的精确和更可扩展的近似方法都可以用于验证任务,其中适用的度量包括与可计算的基础真值的距离,误差模型与数据的拟合质量等。在这里,我们提出了一个库扩展,其中包括基于可在高性能计算机上执行的可扩展混合工作流的量子模拟验证方法。我们提供了使用基于张量网络和稳定器模拟器的近似方法来约束NISQ硬件上的量子模拟误差的例子。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信