Operations on Signed Distance Function Estimates

Csaba Bálint, Gábor Valasek, L. Gergó
{"title":"Operations on Signed Distance Function Estimates","authors":"Csaba Bálint, Gábor Valasek, L. Gergó","doi":"10.14733/cadconfp.2022.329-333","DOIUrl":null,"url":null,"abstract":"Introduction: Our paper presents a general theoretical framework to investigate the quantitative aspects of bounding distance functions. We propose a precision de nition that quanti es the accuracy of the min/max representation of set-theoretic operations [5] in the entire space and demonstrate how the precision and the geometric con guration of the arguments determine the accuracy of the resulting approximation. Our theorems can be applied in an arbitrary geometrical context, e.g., for objects with or without volumes, implicit curves, non-di erentiable or non-manifold surfaces, fractals, and any combination of these. We identify a subset of Hart's signed distance lower bounds [3] called signed distance function estimates (SDFE) and show that the sphere tracing algorithm retains convergence under set-theoretic union and intersection operations, a result for which a general derivation has not yet been presented. Most so-called distance estimates used by the industry and the online creative coding communities such as ShaderToy are SDFEs, placing no practical restrictions on the applicability of our results. This paper builds upon the theoretical results of Luo et al. [4], Bálint et al.[1], and Valasek et al. [6].","PeriodicalId":316648,"journal":{"name":"CAD'22 Proceedings","volume":"41 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-06-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"CAD'22 Proceedings","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.14733/cadconfp.2022.329-333","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Introduction: Our paper presents a general theoretical framework to investigate the quantitative aspects of bounding distance functions. We propose a precision de nition that quanti es the accuracy of the min/max representation of set-theoretic operations [5] in the entire space and demonstrate how the precision and the geometric con guration of the arguments determine the accuracy of the resulting approximation. Our theorems can be applied in an arbitrary geometrical context, e.g., for objects with or without volumes, implicit curves, non-di erentiable or non-manifold surfaces, fractals, and any combination of these. We identify a subset of Hart's signed distance lower bounds [3] called signed distance function estimates (SDFE) and show that the sphere tracing algorithm retains convergence under set-theoretic union and intersection operations, a result for which a general derivation has not yet been presented. Most so-called distance estimates used by the industry and the online creative coding communities such as ShaderToy are SDFEs, placing no practical restrictions on the applicability of our results. This paper builds upon the theoretical results of Luo et al. [4], Bálint et al.[1], and Valasek et al. [6].
有符号距离函数估计的运算
本文提出了一个研究边界距离函数定量方面的一般理论框架。我们提出了一个精度定义,用于量化集合论运算[5]在整个空间中的最小/最大表示的精度,并演示了参数的精度和几何配置如何决定结果逼近的精度。我们的定理可以应用于任意几何环境,例如,有或没有体积的物体,隐曲线,不可微分或非流形表面,分形,以及这些的任何组合。我们确定了Hart的有符号距离下界[3]的一个子集,称为有符号距离函数估计(SDFE),并证明了球跟踪算法在集合论并和交操作下保持收敛性,这一结果尚未给出一般的推导。业界和在线创意编码社区(如ShaderToy)使用的大多数所谓的距离估计都是sdfe,这对我们的结果的适用性没有实际限制。本文基于Luo等[4]、Bálint等[1]和Valasek等[6]的理论成果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信