Lossy Image Compression with Filter Bank Based Convolutional Networks

Shaohui Li, Ziyang Zheng, Wenrui Dai, H. Xiong
{"title":"Lossy Image Compression with Filter Bank Based Convolutional Networks","authors":"Shaohui Li, Ziyang Zheng, Wenrui Dai, H. Xiong","doi":"10.1109/DCC.2019.00010","DOIUrl":null,"url":null,"abstract":"Filter bank based convolutional networks (FBCNs) enable efficient separable multiscale and multidirectional decomposition with a convolutional cascade of 1-D radial and directional filter banks. In this paper, we propose a two-stage subband coding framework for FBCN analysis coefficients using a SPIHT-like algorithm and subsequent primitive-based adaptive arithmetic coding (AAC). The SPIHT-like algorithm extends spatial orientation tree to exploit inter-subband dependency between subbands of different scales and directions. Mutual information is estimated for information-theoretical measurement to formulate such dependencies. Various primitives are designed adaptively encode the generated bitstream by fitting its varying lists and passes. Neural networks are leveraged to improve probability estimation for AAC, where nonlinear prediction is made based on contexts regarding scales, directions, locations and significance of analysis coefficients. Experimental results show that the proposed framework improves the lossy coding performance for FBCN analysis coefficients in comparison to the state-of-the-arts subband coding schemes SPIHT.","PeriodicalId":167723,"journal":{"name":"2019 Data Compression Conference (DCC)","volume":"49 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-03-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 Data Compression Conference (DCC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/DCC.2019.00010","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5

Abstract

Filter bank based convolutional networks (FBCNs) enable efficient separable multiscale and multidirectional decomposition with a convolutional cascade of 1-D radial and directional filter banks. In this paper, we propose a two-stage subband coding framework for FBCN analysis coefficients using a SPIHT-like algorithm and subsequent primitive-based adaptive arithmetic coding (AAC). The SPIHT-like algorithm extends spatial orientation tree to exploit inter-subband dependency between subbands of different scales and directions. Mutual information is estimated for information-theoretical measurement to formulate such dependencies. Various primitives are designed adaptively encode the generated bitstream by fitting its varying lists and passes. Neural networks are leveraged to improve probability estimation for AAC, where nonlinear prediction is made based on contexts regarding scales, directions, locations and significance of analysis coefficients. Experimental results show that the proposed framework improves the lossy coding performance for FBCN analysis coefficients in comparison to the state-of-the-arts subband coding schemes SPIHT.
基于滤波器组卷积网络的有损图像压缩
基于滤波器组的卷积网络(fbcn)通过一维径向和定向滤波器组的卷积级联实现了有效的可分多尺度和多向分解。在本文中,我们提出了一个FBCN分析系数的两阶段子带编码框架,使用类似spiht的算法和随后的基于原语的自适应算术编码(AAC)。类spiht算法扩展了空间方向树,利用不同尺度和方向的子带之间的子带间依赖关系。相互信息被估计为信息理论测量来制定这种依赖关系。各种原语通过拟合其不同的列表和传递来自适应地编码生成的比特流。利用神经网络来改进AAC的概率估计,其中基于尺度、方向、位置和分析系数的重要性等上下文进行非线性预测。实验结果表明,与目前最先进的子带编码方案SPIHT相比,该框架提高了FBCN分析系数的有损编码性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信