Self-stabilizing Systems in Spite of High Dynamics

K. Altisen, Stéphane Devismes, Anaïs Durand, C. Johnen, F. Petit
{"title":"Self-stabilizing Systems in Spite of High Dynamics","authors":"K. Altisen, Stéphane Devismes, Anaïs Durand, C. Johnen, F. Petit","doi":"10.1145/3427796.3427838","DOIUrl":null,"url":null,"abstract":"We initiate research on self-stabilization in highly dynamic identified message passing systems where dynamics is modeled using time-varying graphs (TVGs). More precisely, we address the self-stabilizing leader election problem in three wide classes of TVGs: the class of TVGs with temporal diameter bounded by Δ, the class of TVGs with temporal diameter quasi-bounded by Δ, and the class of TVGs with recurrent connectivity only, where . We first study conditions under which our problem can be solved. We introduce the notion of size-ambiguity to show that the assumption on the knowledge of the number n of processes is central. Our results reveal that, despite the existence of unique process identifiers, any deterministic self-stabilizing leader election algorithm working in the class or cannot be size-ambiguous, justifying why our solutions for those classes assume the exact knowledge of n. We then present three self-stabilizing leader election algorithms for Classes , , and , respectively. Our algorithm for stabilizes in at most 3Δ rounds. In and , stabilization time cannot be bounded, except for trivial specifications. However, we show that our solutions are speculative in the sense that their stabilization time in is O(Δ) rounds.","PeriodicalId":335477,"journal":{"name":"Proceedings of the 22nd International Conference on Distributed Computing and Networking","volume":"33 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-11-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 22nd International Conference on Distributed Computing and Networking","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3427796.3427838","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

Abstract

We initiate research on self-stabilization in highly dynamic identified message passing systems where dynamics is modeled using time-varying graphs (TVGs). More precisely, we address the self-stabilizing leader election problem in three wide classes of TVGs: the class of TVGs with temporal diameter bounded by Δ, the class of TVGs with temporal diameter quasi-bounded by Δ, and the class of TVGs with recurrent connectivity only, where . We first study conditions under which our problem can be solved. We introduce the notion of size-ambiguity to show that the assumption on the knowledge of the number n of processes is central. Our results reveal that, despite the existence of unique process identifiers, any deterministic self-stabilizing leader election algorithm working in the class or cannot be size-ambiguous, justifying why our solutions for those classes assume the exact knowledge of n. We then present three self-stabilizing leader election algorithms for Classes , , and , respectively. Our algorithm for stabilizes in at most 3Δ rounds. In and , stabilization time cannot be bounded, except for trivial specifications. However, we show that our solutions are speculative in the sense that their stabilization time in is O(Δ) rounds.
高动态自稳定系统
我们开始研究高度动态识别的消息传递系统的自稳定,其中动态是使用时变图(tvg)建模的。更准确地说,我们解决了三大类tvg的自稳定领导者选举问题:时间直径以Δ为界的tvg类,时间直径拟以Δ为界的tvg类,以及仅具有循环连通性的tvg类,其中。我们首先研究在什么条件下可以解决我们的问题。我们引入了大小模糊的概念,以表明对过程数量n的知识的假设是中心的。我们的结果表明,尽管存在唯一的进程标识符,但任何确定性自稳定领导者选举算法在类中工作或不能是大小模糊的,这证明了为什么我们的解决方案假设这些类的确切知识为n。然后我们分别为类,和提出了三种自稳定领导者选举算法。我们的算法在最多3Δ轮中稳定。在和中,稳定时间不可能是有界的,除了一些不重要的规范。然而,我们证明了我们的解是推测性的,因为它们的稳定时间是O(Δ)轮。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信