Singular quasilinear elliptic problems with convection terms

U. Guarnotta
{"title":"Singular quasilinear elliptic problems with convection terms","authors":"U. Guarnotta","doi":"10.1063/5.0082998","DOIUrl":null,"url":null,"abstract":"In this paper we present some very recent results regarding existence, uniqueness, and multiplicity of solutions for quasilinear elliptic equations and systems, exhibiting both singular and convective reaction terms. The importance of boundary conditions (Dirichlet, Neumann, or Robin) is also discussed. Existence is achieved via sub-supersolution and truncation techniques, fixed point theory, nonlinear regularity, and set-valued analysis, while uniqueness and multiplicity are obtained by monotonicity arguments.","PeriodicalId":335959,"journal":{"name":"INTERNATIONAL CONFERENCE OF NUMERICAL ANALYSIS AND APPLIED MATHEMATICS ICNAAM 2020","volume":"135 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-07-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"INTERNATIONAL CONFERENCE OF NUMERICAL ANALYSIS AND APPLIED MATHEMATICS ICNAAM 2020","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1063/5.0082998","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

In this paper we present some very recent results regarding existence, uniqueness, and multiplicity of solutions for quasilinear elliptic equations and systems, exhibiting both singular and convective reaction terms. The importance of boundary conditions (Dirichlet, Neumann, or Robin) is also discussed. Existence is achieved via sub-supersolution and truncation techniques, fixed point theory, nonlinear regularity, and set-valued analysis, while uniqueness and multiplicity are obtained by monotonicity arguments.
具有对流项的奇异拟线性椭圆问题
本文给出了拟线性椭圆型方程和系统解的存在性、唯一性和多重性的一些最新结果,这些结果显示了奇异反应项和对流反应项。边界条件(狄利克雷、诺伊曼或罗宾)的重要性也进行了讨论。通过次超解和截断技术、不动点理论、非线性正则性和集值分析实现存在性,通过单调性论证获得唯一性和多重性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信