OceanGAN

Christopher Ratto, M. Szeto, D. Slocum, Kevin Del Bene
{"title":"OceanGAN","authors":"Christopher Ratto, M. Szeto, D. Slocum, Kevin Del Bene","doi":"10.1145/3306214.3338559","DOIUrl":null,"url":null,"abstract":"Physics-based models for ocean dynamics and optical raytracing are used extensively for rendering maritime scenes in computer graphics [Darles et al. 2011]. Raytracing models can provide high-fidelity representations of an ocean image with full control of the underlying environmental conditions, sensor specifications, and viewing geometry. However, the computational expense of rendering ocean scenes can be high. This work demonstrates an alternative approach to ocean raytracing via machine learning, specifically Generative Adversarial Networks (GANs) [Goodfellow et al. 2014]. In this paper, we demonstrate that a GAN trained on several thousand small scenes produced by a raytracing model can be used to generate megapixel scenes roughly an order of magnitude faster with a consistent wave spectrum and minimal processing artifacts.","PeriodicalId":216038,"journal":{"name":"ACM SIGGRAPH 2019 Posters","volume":"35 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-07-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACM SIGGRAPH 2019 Posters","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3306214.3338559","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

Abstract

Physics-based models for ocean dynamics and optical raytracing are used extensively for rendering maritime scenes in computer graphics [Darles et al. 2011]. Raytracing models can provide high-fidelity representations of an ocean image with full control of the underlying environmental conditions, sensor specifications, and viewing geometry. However, the computational expense of rendering ocean scenes can be high. This work demonstrates an alternative approach to ocean raytracing via machine learning, specifically Generative Adversarial Networks (GANs) [Goodfellow et al. 2014]. In this paper, we demonstrate that a GAN trained on several thousand small scenes produced by a raytracing model can be used to generate megapixel scenes roughly an order of magnitude faster with a consistent wave spectrum and minimal processing artifacts.
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信