TOKEN is a MASK: Few-shot Named Entity Recognition with Pre-trained Language Models

A. Davody, David Ifeoluwa Adelani, Thomas Kleinbauer, D. Klakow
{"title":"TOKEN is a MASK: Few-shot Named Entity Recognition with Pre-trained Language Models","authors":"A. Davody, David Ifeoluwa Adelani, Thomas Kleinbauer, D. Klakow","doi":"10.48550/arXiv.2206.07841","DOIUrl":null,"url":null,"abstract":"Transferring knowledge from one domain to another is of practical importance for many tasks in natural language processing, especially when the amount of available data in the target domain is limited. In this work, we propose a novel few-shot approach to domain adaptation in the context of Named Entity Recognition (NER). We propose a two-step approach consisting of a variable base module and a template module that leverages the knowledge captured in pre-trained language models with the help of simple descriptive patterns. Our approach is simple yet versatile and can be applied in few-shot and zero-shot settings. Evaluating our lightweight approach across a number of different datasets shows that it can boost the performance of state-of-the-art baselines by 2-5% F1-score.","PeriodicalId":358274,"journal":{"name":"International Conference on Text, Speech and Dialogue","volume":"25 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-06-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Conference on Text, Speech and Dialogue","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.48550/arXiv.2206.07841","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

Abstract

Transferring knowledge from one domain to another is of practical importance for many tasks in natural language processing, especially when the amount of available data in the target domain is limited. In this work, we propose a novel few-shot approach to domain adaptation in the context of Named Entity Recognition (NER). We propose a two-step approach consisting of a variable base module and a template module that leverages the knowledge captured in pre-trained language models with the help of simple descriptive patterns. Our approach is simple yet versatile and can be applied in few-shot and zero-shot settings. Evaluating our lightweight approach across a number of different datasets shows that it can boost the performance of state-of-the-art baselines by 2-5% F1-score.
TOKEN是一种掩码:使用预训练的语言模型进行少镜头命名实体识别
将知识从一个领域转移到另一个领域对于自然语言处理中的许多任务具有重要的实际意义,特别是当目标领域的可用数据量有限时。在这项工作中,我们提出了一种在命名实体识别(NER)背景下进行领域自适应的新方法。我们提出了一种两步的方法,包括一个变量基础模块和一个模板模块,该模块利用在简单描述性模式的帮助下从预训练的语言模型中获取的知识。我们的方法是简单而通用的,可以应用于少拍和零拍的设置。在许多不同的数据集上评估我们的轻量级方法表明,它可以将最先进基线的性能提高2-5%的f1分数。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信