A Method For Multiclass Lymphoma Classification Based on Morphological and Non-Morphological Descriptors

Tiago P. de Faria, M. Z. Nascimento, L. G. A. Martins
{"title":"A Method For Multiclass Lymphoma Classification Based on Morphological and Non-Morphological Descriptors","authors":"Tiago P. de Faria, M. Z. Nascimento, L. G. A. Martins","doi":"10.5753/wvc.2021.18911","DOIUrl":null,"url":null,"abstract":"Lymphoma is one of the most common types of cancer and its treatment can be more effective if the disease variant is correctly diagnosed. Many works have been done using computer vision and machine learning to classify the images. This work presents lymphoma based on histological a method using simple descriptors and a decision tree-based ensemble classifier, aiming to maintaing the interpretability of the data and understand what information in most important to the classification task. We use morphological and non morphological descriptors extracted from the cells nuclei, a feature selection method based on principal component analysis (PCA), and a gradient boosting decision tree (GBDT) method for multiclass classification. Our approach achieves an average accuracy of 0.932. this result is close to those obtained in the state of the art, while it uses simpler descriptors and better interpretable classification models.","PeriodicalId":311431,"journal":{"name":"Anais do XVII Workshop de Visão Computacional (WVC 2021)","volume":"101 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-11-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Anais do XVII Workshop de Visão Computacional (WVC 2021)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5753/wvc.2021.18911","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Lymphoma is one of the most common types of cancer and its treatment can be more effective if the disease variant is correctly diagnosed. Many works have been done using computer vision and machine learning to classify the images. This work presents lymphoma based on histological a method using simple descriptors and a decision tree-based ensemble classifier, aiming to maintaing the interpretability of the data and understand what information in most important to the classification task. We use morphological and non morphological descriptors extracted from the cells nuclei, a feature selection method based on principal component analysis (PCA), and a gradient boosting decision tree (GBDT) method for multiclass classification. Our approach achieves an average accuracy of 0.932. this result is close to those obtained in the state of the art, while it uses simpler descriptors and better interpretable classification models.
一种基于形态学和非形态学描述符的多类淋巴瘤分类方法
淋巴瘤是最常见的癌症类型之一,如果疾病变体得到正确诊断,其治疗可以更有效。使用计算机视觉和机器学习对图像进行分类已经完成了许多工作。本文提出了基于组织学的淋巴瘤分类方法,使用简单的描述符和基于决策树的集成分类器,旨在保持数据的可解释性,并了解哪些信息对分类任务最重要。我们使用从细胞核中提取的形态学和非形态学描述符、基于主成分分析(PCA)的特征选择方法和梯度增强决策树(GBDT)方法进行多类分类。我们的方法达到了0.932的平均精度。这个结果接近于在目前的技术状态下获得的结果,同时它使用了更简单的描述符和更好的可解释分类模型。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信